| 研究生: |
許維哲 Hsu, Wei-Che |
|---|---|
| 論文名稱: |
添加劑對鋁氫化鋰放氫行為影響之研究 Effect of Additives on Dehydrogenation Behavior of Lithium Aluminum Hydride |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 儲氫材料 、鋁氫化鋰 、氫化鎂 、多壁奈米碳管 、臨場同步輻射X光繞射分析 |
| 外文關鍵詞: | hydrogen storage materials, lithium aluminum hydride, magnesium hydride, multi-walled carbon nanotubes, In-situ synchrotron X-ray diffraction |
| 相關次數: | 點閱:111 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶劑混合法與機械球磨法於鋁氫化鋰 (LiAlH4) 中添加 多壁奈米碳管,為了瞭解多壁奈米碳管的催化效果,首先以X光繞射分析其組成相結晶結構,並利用電子顯微鏡觀察其表面形貌,再藉由臨場同步輻射X光繞射技術分析材料於放氫過程中的結晶結構變化,配合熱重分析評估各種混合粉體的放氫性質,包含放氫量、放氫溫度和反應方程式等。經臨場同步輻射X光繞射分析,所添加之奈米碳管不會參與鋁氫化鋰的二階段放氫反應,反應式如下:
I. 3LiAlH4 → Li3AlH6 + 2Al + 3H2
II. Li3AlH6 → 3LiH + Al + 1.5H2
對於經球磨混合10 wt%、20 wt% 與40 wt% 奈米碳管的鋁氫化鋰,經熱重分析評估起始放氫溫度由175 oC逐漸降低至120 oC,對應放氫量分別為6.1 wt%、5.8 wt% 及5.6 wt%。實驗結果顯示添加奈米碳管於鋁氫化鋰中有助於放氫反應的進行,使反應起始溫度降低約60 oC,並且改善其放氫速率。
氫化鎂為另一個在本研究中所選擇的添加劑,利用球磨混合以獲得不同莫耳比例的鋁氫化鋰-氫化鎂混合氫化物。研究結果顯示不同莫耳比的鋁氫化鋰-氫化鎂混合氫化物具有不同的熱放氫反應步驟,氫化鎂與鋁氫化鋰放氫過程中產物包含LiAlMgH6、Al3Mg2、Al12Mg17以及Li0.92Mg4.08,顯示鋁氫化鋰與氫化鎂之間有交互反應發生,詳細的反應將在本文加以討論。而經熱重分析評估,混合之鋁氫化鋰及氫化鎂的起始放氫溫度皆低於個別分析時的溫度,顯示二者會互相催化其放氫反應。由臨場同步輻射X光繞射分析,鋁氫化鋰-氫化鎂混合氫化物的起始放氫溫度最低達125 °C。當鋁氫化鋰-氫化鎂莫耳比為4:1時,具有最高放氫量為6.4 wt%。
In this study, the LiAlH4 (lithium alanate) was mixed with multi-walled carbon nanotubes (MWCNTs) by solvent mixed method and mechanical ball milling. The effect of MWCNTs addition on the dehydrogenation behavior of LiAlH4 was investigated by using high-pressure thermal gravimetric analysis (HPTGA) and in-situ synchrotron X-ray diffraction technique. The results showed that as the amount of MWCNTs additives increased to 40 wt%, the initial dehydrogenation temperature gradually decreased from 175 ºC to 120 ºC. The amounts of H2 released from the 10, 20, 40 wt% MWCNTs-admixed LiAlH4 were 6.1, 5.8 and 5.6 wt%.
In-situ synchrotron XRD analysis revealed that MWCNTs did not modify the dehydrogenation pathway of LiAlH4 which experienced a two-step dehydrogenation including 3LiAlH4 → Li3AlH6 + 2Al + 3H2 and Li3AlH6 → 3LiH + Al + 1.5H2. However, TGA analysis indicated that MWCNTs played a catalytic role in the dehydrogenation of LiAlH4, causing a decrease in the dehydrogenation temperature and enhancing the desorption kinetics.
MgH2 was also selected as an additive and was admixed with LiAlH4. Various mole ratio of LiAlH4-MgH2 mixtures were also fabricated by mechanical ball milling. The compound such as LiAlMgH6, Al3Mg2, Al12Mg17 and Li0.92Mg4.08 appeared during heating suggests the mutual reaction between LiAlH4 and MgH2. The reaction mechanisms of LiAlH4-MgH2 mixtures will be proposed and discussed in the content.
LiAlH4 and MgH2 could destabilize each other in the LiAlH4-MgH2 composite system so that the initial dehydrogenation temperatures of both hydrides were reduced. The LiAlH4–MgH2 mixture had an initial dehydrogenation temperature as low as 125 °C, and was able to release 6.4 wt% H2 in 4 LiAlH4-MgH2 mixtures.
1. G. Marban and T. Vales-Solis, “Towards the hydrogen economy?”, Int. J. Hydrog. Energy 32 (2007) 1625-1637.
2. A. Züttel, “Hydrogen storage methods”, Naturwissenschaften 91 (2004) 157-172.
3. D. Cahen, I. Lubomirsky, “Energy, the global challenge, and materials”, Materials Today 11 (2008) 16-20.
4. M. H. Maack, J. B. Skulason, “Implementing the hydrogen economy”, J. Clean Prod. 14 (2006) 52-64.
5. S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, “The US Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements”, Catal. Today 120 (2007) 246-256.
6. US Department of Energy (2009, September), “Targets for onboard hydrogen storage systems for light-duty vehicles”, Retrieved May 10, 2012, from http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage_explanation.pdf.
7. W. I. F. David, “Effective hydrogen storage: a strategic chemistry challenge”, Faraday Discuss. 151 (2011) 399–414.
8. S. Satyapal, Hydrogen Storage, DOE Hydrogen Program, 2008 Annual Merit Review Proceedings.
9. R. Chahine, T. K. Bose, “Low-pressure adsorption storage of hydrogen”, Int. J. Hydrog. Energy 19 (1994) 161-164.
10. 曾宦雄、黃蒨芸、曹芳海、藍兆禾,吸附型儲氫材料現況發展,工業材料雜誌,313 (2013) 119-131.
11. W. Grichala, P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen”, Chem. Rev. 104 (2004) 1283-1315.
12. Basic research needs for the hydrogen economy, Second Printing, U.S. Department of Energy, “Basic Research Challenges for Hydrogen Storage”, Washington, DC (2004) 31-35.
13. R. A. Varin, T. Czujko, Z. S. Wronski, “Nanomaterials for Solid State Hydrogen Storage”, New York, Springer Science+Business Media, 2009.
14. L. Schlapbach, A. Züttel, “Hydrogen-storage materials for mobile appplications”, Nature 414 (2001) 353-358.
15. G. Sandrock, R. C. Bowman Jr., “ Gas-based hydride applications: recent progress and future needs”, J. Alloys Compd. 356–357 (2003) 794-799 .
16. F. Schüth, B. Bogdanović, M. Felderhoff, “Light metal hydrides and complex hydrides for hydrogen storage”, Chem. Commun. (2004) 2249-2258.
17. D. Chandra, J. J. Reilly, R. Chellappa, “Metal hydrides for vehicular applications: the state of the art”, JOM 58 (2006) 26-32.
18. L. George, S. K. Saxena, “Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali-earth elements: a review”, Int. J. Hydrog. Energy 35 (2010) 5454-5470.
19. B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, J. Tölle “Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials”, J. Alloys Compd. 302 (2000) 36-58.
20. M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, “Small Ti clusters for catalysis of hydrogen exchange in NaAlH4”, Nanotechnology 14 (2003) 778-785.
21. H. Morioka, K. Kakizaki, S. C. Chung, A.Yamada, “Reversible hydrogen decomposition of KAlH4”, J. Alloys Compd. 353 (2003) 310-314.
22. M. Fichtner, O. Fuhr, O. Kircher, “Magnesium alanate–a material for reversible hydrogen storage?”, J. Alloys Compd. 356-357 (2003) 418-422.
23. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, “Complex hydrides for hydrogen storage”, Chem. Rev. 107 (2007) 4111-4132.
24. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, Int. J. Hydrog. Energy 32 (2007) 1121-1140.
25. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, H. K. Liu, “Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium”, J. Alloys Compd. 427 (2007) 94-100.
26. X. Yao, C. Wu, A. Du, G. Q. Lu, H. Cheng, S. C. Smith, J. Zou, Y. He, “Mg-Based Nanocomposites with High Capacity and Fast Kinetics for Hydrogen Storage”, J. Phys. Chem. B 110 (2006) 11697-11703.
27. A. Ming, “Hydrogen storage properties of magnesium based nanostructured composite materials”, Mat. Sci. Eng. B-Solid 117 (2005) 37-44
28. O. Gutfleisch, N. Schlorke-de Boer, N. Ismail, M. Herrich, A. Walton, J. Speight, I. R. Harris , A. S. Pratt , A. Züttel, “Hydrogenation properties of nanocrystalline Mg- and Mg2Ni-based compounds modified with platinum group metals (PGMs)”, J. Alloys Compd. 356-357 (2003) 598-602.
29. R. A. Varin, S. Lia, Ch. Chiu, L. Guo, O. Morozova, T. Khomenko, Z. Wronski, “Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems”, J. Alloys Compd. 404-406 (2005) 494-498.
30. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems”, J. Alloys Compd. 292 (1999) 247-252.
31. A. Zaluska, L. Zaluski, J. O. Ström-Olsen, “Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage”, Appl. Phys. A 72 (2001) 157-165.
32. Y. Q. Hu, H. F. Zhang, A. M. Wang, B. Z. Ding, Z. Q. Hu, “Preparation and hydriding/dehydriding properties of mechanically milled Mg-30wt% TiMn1.5 composite”, J. Alloys Compd. 354 (2003) 296-302.
33. X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, G. Lu, “Metallic and carbon nanotube-catalyzed Coupling of hydrogenation in magnesium”, J. Am. Chem. Soc. 129 (2007) 15650-15654.
34. A. E. Finholt, A. C. Bond, H. I. Schlesinger, “Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry”, J. Am. Chem. Soc. 69 (1947) 1199-1203.
35. E. C. Ashby, G. J. Brendel, H. E. Redman, “Direct synthesis of complex metal hydrides”, Inorg. Chem. 2 (1963) 499-504.
36. H. Clasen, “Alanate synthesis from the elements and its significance”, Angew. Chem. Int. Ed. 73 (1961) 322-331.
37. J. Graetz, J. Wegrzyn, J. J. Reilly, “Regeneration of Lithium Aluminum Hydride” J. Am. Chem. Soc. 130 (2008) 17790-17794.
38. Y. Kojima, Y. Kawai, T. Haga, M. Matsumoto, A. Koiwai, “Direct formation of LiAlH4 by a mechanochemical reaction”, J. Alloys Compd. 441 (2007) 189-191.
39. J. Wang, A. D. Ebner, J. A. Ritter, “Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4”, J. Am. Chem. Soc. 128 (2006) 5949-5954.
40. N. Sklar, B. Post, “Crystal structure of lithium aluminum hydride”, Inorg. Chem. 6 (1967) 669-671.
41. B. C. Hauback, H. W. Brinks, H. Fjellvåg, “Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction”, J. Alloys Compd. 346 (2002) 184-189.
42. J. A. Dilts, E. C. Ashby, “A study of the thermal decomposition of complex metal hydrides”, Inorg. Chem. 11 (1972) 1230-1236.
43. T. N. Dymova, V. N. Konoplev, D. P. Aleksandrov, A. S. Sizareva, T. A. Silina, “A novel view of the nature of chemical- and phase-composition modifications in lithium hydridoaluminates LiAlH4 and Li3AlH6 on heating”, Russ. J. Coord. Chem. 21 (1995) 165-172.
44. V. P. Balema, K. W. Dennis, V. K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]− into octahedral [AlH6]3− in lithium aluminohydride”, Chem. Commun. (2000) 1665-1666.
45. A. Andreasen, T. Vegge, A. S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4”, J. Solid State Chem. 178 (2005) 3672-3678.
46. J. R. Ares, K. F. Aguey-Zinsou, M. Porcu , J. M. Sykes, M. Dornheim, T. Klassen, R. Bormann, “Thermal and mechanically activated decomposition of LiAlH4”, Mater. Res. Bull. 43 (2008) 1263-1275.
47. J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita, T. Sakai, “Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6”, J. Phys. Chem. B 105 (2001) 11214-11220.
48. M. Resan, M.D. Hampton, J. K. Lomness, D. K. Slattery, “Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int. J. Hydrog. Energy 30 (2005) 1413–1416.
49. J. R. Ares Fernandez, F. Aguey-Zinsou, M. Elsaesser, X. Z. Ma, M. Dornheim, T. Klassen, R. Bormann, “Mechanical and thermal decomposition of LiAlH4 with metal halides”, Int. J. Hydrog. Energy 32 (2007) 1033–1040.
50. P. E. de Jongh, P. Adelhelm, “Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals”, Chem. Sus. Chem. 3 (2010) 1332-1348.
51. P. Adelhelm, P. E. de Jongh, “The impact of carbon materials on the hydrogen storage properties of light metal hydrides”, J. Mater. Chem. 21 (2011) 2417-2427.
52. L. Hima Kumar, B. Viswanathan, S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4-the catalytic role of carbon nanofibres”, Int. J. Hydrog. Energy 33 (2008) 366-373.
53. M. S. L. Hudson, H. Raghubanshi, D. Pukazhselvan, O. N. Srivastava, “Effects of helical GNF on improving the dehydrogenation behavior of LiMg(AlH4)3 and LiAlH4”, Int. J. Hydrog. Energy 35 (2010) 2083-2090.
54. M. Ismail, Y. Zhao, X. B. Yu, A. Ranjbar, S. X. Dou, “Improved hydrogen desorption in lithium alanate by addition of SWCNT-metallic catalyst composite”, Int. J. Hydrog. Energy 36 (2011) 3593-3599.
55. J. A. Teprovich Jr., D. A. Knight, M. S. Wellons, R. Zidan, “Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4”, J. Alloys Compds. 509S (2011) S562-S566.
56. D. Pukazhelvan, B. K. Gupta, A. Srivastava, O. N. Srivastava, “Investigations on hydrogen storage behavior of CNT doped NaAlH4”, J Alloys Compd. 403 (2005) 312-317.
57. P. A. Berseth, A. G. Harter, R. Zidan, A. Blomqvist, C. M. Araujo, R. H. Scheicher, R. Ahuja, P. Jena, “Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4”, Nano Letters 9 (2009) 1501-1505.
58. X. B. Yu, Z. Wu, Q. R. Chen, Z. L. Li, B. C. Weng, T. S. Huang, “Improved hydrogen storage properties of LiBH4 destabilized by carbon”, Appl. Phys. Lett. 90 (2007) 034106 1-3.
59. J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and copper”, Inorg. Chem. 6 (1967) 2220-2223.
60. J. J. Reilly Jr., R. H. Wiswall Jr., “Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4”, Inorg. Chem. 7 (1968) 2254-2256.
61. J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith, G. L. Olson, “Thermodynamic destabilization and reaction kinetics in light metal hydride systems”, J. Alloys Compd. 446–447 (2007) 409-414.
62. R. A. Varin, T. Czujko, C. Chiu, R. Pulz, Z. S. Wronski, “Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques”, J. Alloys Compd. 483 (2009) 252-255.
63. M. Ismail, Y. Zhao, X. B. Yu, J. F. Mao, S. X. Dou, “The hydrogen storage properties and reaction mechanism of the MgH2–NaAlH4 composite system”, Int. J. Hydrog. Energy 36 (2011) 9045-9050.
64. M. S. L. Hudson, D. Pukazhselvan, G. I. Sheeja, O. N. Srivastava, “Studies on synthesis and dehydrogenation behavior of magnesium alanate and magnesium-sodium alanate mixture”, Int. J. Hydrog. Energy 32 (2007) 4933-4938.
65. Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, K. Miwa, Y. Kojima, S. Orimo, “Dehydriding reactions of mixed complex hydrides”, J. Power Sources 155 (2006) 447-455.
66. Y. Zhang, Q. F. Tian, S. S. Liu, L. X. Sun, “The destabilization mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system”, J. Power Sources 185 (2008) 1514-1518.
67. R. Chen, X. Wang, L. Xu, L. Chen, S. Li, C. Chen, “An investigation on the reaction mechanism of LiAlH4-MgH2 hydrogen storage system”, Mater. Chem. Phys. 124 (2010) 83-87.
68. H. W. Brinks, B. C. Hauback, P. Norby, H. Fjellvåg, “The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction”, J. Alloys Compd. 351 (2003) 222-227.
69. D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater. Sci. Eng. B 108 (2004) 54-59.
70. M. Mamatha, C. Weidenthaler, A. Pommerin, M. Felderhoff, F. Schüth, “Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods”, J. Alloys Compd. 416 (2006) 303-314.
71. D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby, J. Muller, “Isothermal decomposition of LiAlD4 with and without additives”, J. Alloys Compd. 404-406 (2005) 743-747.
72. H. T. Takeshita, Y. Kamada, A. Taniguchi, T. Kiyobayashi, K. Ichii, T. Oishi, “Relation between melting and dehydrogenation temperatures of LiAlH4”, Mater. Trans. 47 (2006) 405-408.
73. T. T. Chen, C. H. Yang, W. T. Tsai, “In-situ synchrotron X-ray diffraction study on the dehydrogenation behavior of NaAlH4 modified by multi-walled carbon nanotubes”, Int. J. Hydrog. Energy 37 (2012) 14285-14291.
74. J. J. Vajo, F. Mertens, C. A. Channing, C. B. Robert Jr., F. Brent, “Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si”, J. Phys. Chem. B 108 (2004) 13977-13983.
75. T. Czujko, Z. Zaranski, I. E. Malka, Z. Wronski, “Composite behaviour of MgH2 and complex hydride mixtures synthesized by ball milling”, J. Alloys Compd. 509S (2011) S604-S607.
76. A. R. Akbarzadeh, C. Wolverton, V. Ozolins, “First-principles determination of crystal structures, phase stability, and reaction thermodynamics in the Li-Mg-Al-H hydrogen storage system”, Phys. Rev. B 79 (2009) 184102.
77. H. Grove, O. M. Løvvik, W. Huang, S. M. Opalka, R. H. Heyn, B. C. Hauback, “Decomposition of lithium magnesium aluminium hydride”, Int. J. Hydrog. Energy 36 (2011) 7602-7611.