簡易檢索 / 詳目顯示

研究生: 陳蕙珊
Chin, Hui-San
論文名稱: 金門受水池中影響微囊藻生長主要因素探討
A Study on the Factors Affecting the Growth of Microcystis aeruginosa in the Receiving Pond of Kinmen
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 107
中文關鍵詞: 鹼度pH值鈣離子微囊藻藻華
外文關鍵詞: Alkalinity, pH, Calcium ion, Microcystis bloom
相關次數: 點閱:202下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金門地面水資源不足、且湖庫常有水質不佳的問題,影響當地供水的質與量,因此協議自大陸透過海底管線引水,作為自來水水源。引水工程自107年8月正式通水,原水經田浦受水池短暫停留後,抽往金門東部各淨水場(太湖淨水場、榮湖淨水場) 進行淨水處理。依各項水質檢測資料顯示,水質與微生物皆符合合約標準,然受水池仍不定期發生藻華現象,甚至長達數週。因此,本研究擬探討藻華之成因,以提供選擇控制技術之參考。
    為瞭解水體在海底管線運輸過程中pH值的變化、水體鹼度的影響及大量鈣離子的引入對銅綠微囊藻生長的影響,本實驗在控制溫度和光照條件下,利用藻類批量進行了不同實驗條件來進行培養試驗。(1)不同pH值對於微囊藻之生長:情況研究設計了不同初始pH (pH6.5、pH7.6 及 pH8.5) 和固定pH (pH 6.5及pH8.5) 對微囊藻生長的影響。結果表明:藻類對水體pH 有較強的緩衝能力,可以通過自身增殖活動改變水體的pH,因而不同初始pH 對藻類生長的影響不明顯,但實驗過程中持續固定pH ,藻類的生長量較低。銅綠微囊藻(Microcystis aeruginosa)適宜的生長在中性或弱鹼性的環境 (pH7.6 及 pH8.5)生長,當環境水體偏酸性 (pH6.5)的情況下微囊藻生長速率較低但生長量並不受影響。另外在持續受pH值改變的情況下微囊藻會受到抑制的影響。(2)鹼度對於微囊藻之生長: 本研究以不同初始鹼度進行了批次實驗,結果表明微囊藻在高鹼度水體生長遲滯其比低鹼度短而最佳生長鹼度範圍為50mg/L CaCO3。(3)不同鈣離子濃度對於微囊藻之生長:本研究進行了室內模擬以不同鈣離子濃度的水進流之水庫對微囊藻的生長。實驗結果表明,微囊藻藻密度在鈣離子濃度25mg/L最高而隨著鈣離子濃度增加使微囊藻細胞形成群體產生微環境利於微囊藻的生長。另外透過批次實驗結果表明鈣離子最佳生長範圍為14-25mg/L。

    Microcystis aeruginosa, a freshwater cyanobacterium, is commonly found as a dominant species in algal blooms in water lake and reservoirs. In natural water bodies, the eutrophication of water causes by many factors which from environmental pollution, rainwater runoff, etcetera, to form algal blooms and affect the water quality of the reservoir. Water sources of Kinmen, Taiwan suffered from insufficient quantity and polluted water quality. Therefore, the government initiated a project to import water from Mainland China and mainland water diversion project has been officially completed and in commissioned in August 2018. Presently, the raw water from the mainland was extracted from LongHu Reservoir, Jingjiang, Fujiang, is extracted, transported through a submarine pipeline, stored in the Tianpu Receiving Pond, and then pumped into the water treatment plants in Eastern Kinmen (Taihu and Ronghu) for water treatment and supply. According to the monitoring data of LongHu Reservoir, the water quality and cyanobacteria were all compliant with the contract standards, and however, cyanobacterial blooms were observed in the Receiving Pond from time to time, sometimes for several weeks. Therefore, Kinmen County Water Treatment Plant (referred to as the water plant) is interested in knowing the possible reasons to cause the blooms so that the water plant can find appropriate control solutions. This study was designed to find the most likely factors affecting the forming of algal blooms in the Receiving Pond. Literatures and information of the water diversion projects were collected, reviewed, and analyzed. Then laboratory cultured experiments were carried out to test a few probable factors relevant to bloom forming, including impact of pH, alkalinity, and calcium on the growth rate of Microcystis aeruginosa.
    The experimental results show that cyanobacteria have a high buffering capacity for the pH of the water body, and it can change the pH of the water body through their own growth activities. Therefore, different initial pH has no obvious effect on the growth of cyanobacteria in the total amount of production, but the growth rates under controlled pH are low during the experiment. M. aeruginosa is suitable for growth in a neutral or weakly alkaline environment (pH 7.6 and pH 8.5). Under acidic condition (pH 6.5), the growth rate of Microcystis is low but it grows at normal growth rate when the environment turns neutral. For higher pH (>10.5), the growth of Microcystis was inhibited. Alkalinity was also found to affect the growth of Microcystis, with optimal growth alkalinity at 50mg/L CaCO3. The experiments for different calcium concentrations showed that the best growth condition for Microcystis is at concentration of 14-25 mg/L, and the capability to form colonies increased with increasing calcium concentration. However, forming larger colonies slowed down the growth of Microcystis. The findings of this study may provide useful insight for further design the cyanobacteria control measures for the Receiving Pond.

    摘要 I Abstract II Contents IV Content of Figure in Chapter 3 VIII Content of Table in Chapter 3 IX Content of Figure in Chapter 4 X Content of Table in Chapter 4 XII Chapter 1 Introduction 1 1-1 Research Background 1 1-2 Research Objectives 3 Chapter 2 Literature Review 4 2-1 Introduction 4 2-2 Factors affecting the growth of cyanobacteria 5 2-2-1 Nutrients 5 2-2-2 Nutrient requirements for the growth of Microcystis aeruginosa 6 2-2-3 Sediment 7 2-3 The influence of metals on growth of cyanobacteria 8 2-3-1 Calcium 9 2-3-2 Other elements restriction 10 2-3-2-1 Iron 10 2-3-2-2 Molybdenum 11 2-4 pH and CO2 concentration 12 2-4-1 Inorganic carbon 14 2-5 Alkalinity 17 2-6 Other factor 18 2-6-1 Dissolved oxygen 18 2-6-2 Climatic conditions 18 2-6-3 Temperature and light intensity 20 2-6-4 Hydrodynamics 20 2-7 Control of Cyanobacteria in Lakes and Reservoirs 22 Chapter 3 Material and Methods 26 3-1 Research Plan 26 3-2 The culture of cyanobacteria 28 3-2-1 The source of cyanobacteria 28 3-2-2 Cultivation of Microcystis 29 3-2-3 Laboratory chemicals and apparatus 31 3-3 Cell count of cyanobacteria 33 3-4 Effect of pH 37 3-5 Alkalinity 41 3-5-1 Experimental method 42 3-5-1-1 Alkalinity in 20-130 mg/L CaCO3 with different medium. 42 3-5-1-2 Alkalinity in 20-50 mg/L CaCO3 44 3-6 Calcium ion 45 3-6-1 Experiments method 46 3-6-1-1 Continuous experiments with cement as source of calcium. 46 3-6-1-2 Continuous experiment with calcium chloride as calcium source 48 3-6-1-3 Batch Experiment with calcium chloride. 49 3-7 Calcium and Alkalinity 50 3-7-1 Experimental method 50 3-8 Analysis methods 52 3-8-1 Analytical methods 52 3-8-1-1 Growth rate of Microcystis 52 3-8-1-2 pH: 53 3-8-1-3 Alkalinity: 53 3-8-1-4 Calcium 54 Chapter 4 Results and Discussion 55 4-1 pH 55 4-1-1 The effect of pH on the growth of cyanobacteria 55 4-2 Alkalinity 61 4-2-1 The effect of alkalinity in 20-130 mg/L CaCO3 to the growth of cells in different medium. 61 4-2-2 The effect of alkalinity in 20-50 mg/L CaCO3 to the growth of cells. 63 4-3 Calcium ion concentration on Microcystis growth curve 66 4-3-1 Experiments on simulating cement release calcium ion under Continuous Flow Conditions 66 4-3-2 Experiment with calcium chloride as source of calcium ion under continuous flow 69 4-4 Effect of calcium and alkalinity on Microcystis growth 79 4-4-1 Batch experiments with different alkalinity and calcium concentrations in different medium 79 4-5 Discussion 82 4-5-1 pH 82 4-5-2 Alkalinity 83 4-5-3 Effect of Calcium 86 Chapter 5 Conclusions 88 Chapter 6 References 89

    1. Zamyadi A, Fan Y, Daly R I, Prévost M, 2013. Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research 47(3), 1080-1090.
    2. Ingrid C, Jamie B, 1999. Toxic cyanobacteria in water. London and New York: E & FN Spon Publisher, 416.
    3. Codd G A, 2000. Cyanobacterial toxins, the perception of water quality and the prioritization of eutrophication control. Ecol Eng., 16: 51—60
    4. Jiang X L, Song L R, 2009. Discussion on the succession factors of dominant species of red tide algae in Quanzhou Bay. Ocean, Lake and Marsh, 40(6): 761—767. (In Chinese)
    5. Xu Z L, 2009. Annual changes of Noctiluca scintillans in the Yangtze River Estuary and the trend of water eutrophication. Oceans and lakes and marshes, 40(6): 793—798. (In Chinese)
    6. Yin M Y, Hu X Y, Zeng C K, 2009. A taxonomic study on the toxic algal bloom-forming species Chrysochromulina leadbeateri in Jiaozhou Bay. Oceans and lakes and marshes, 40(6): 799—802. (In Chinese)
    7. Conradie K R, Plessis S Du, Venter A, 2008. "Re-identification of “Oscillatoria simplicissima” isolated from the Vaal River, South Africa, as Planktothrix pseudagardhii." South African Journal of Botany, 74(1): 101-110.
    8. Tucker Craig S, 2000. "Off-flavor problems in aquaculture." Reviews in Fisheries Science, 8(1): 45-88.
    9. Hu H J, 1980. Freshwater algae in China[M]. Shanghai: Science Press. (In Chinese)
    10. Li X P, 2005. American Lake Fuying Fu Chunping, Zhong Chenghua, Deng Chunguang, et al. Analysis on the Causes of Water Eutrophication[J]. Journal of Chongqing Jianzhu University, 27(1):128-131. (In Chinese)
    11. He S Y, Xu Y T, Hu Z T, 2008. Research progress on the mechanism and treatment technology of lake eutrophication[J]. Shanghai Chemical Industry, 2:1-5. (In Chinese)
    12. Jin G D, 2008.The status quo of research on lake eutrophication in my country[J]. Modern Agricultural Science and Technology, (16):334-336. (In Chinese)
    13. Verjak M, Savsek T, Stuhler E A, 1998. System dynamics of eutrophication process in lakes[J]. Eutropean Journal of Operational Research, (1098):442-451.
    14. Dove, Alice, and Steven C. Chapra, 2015. "Long‐term trends of nutrients and trophic response variables for the Great Lakes." Limnology and Oceanography, 60(2): 696-721.
    15. Schindler, David W, 1974. "Eutrophication and recovery in experimental lakes: implications for lake management." Science, 184(4139): 897-899.
    16. Schindler, David W, 2012. "The dilemma of controlling cultural eutrophication of lakes." Proceedings of the Royal Society B: Biological Sciences, 279(1746): 4322-4333.
    17. Vollenweider, Richard A, 1976. "Advances in defining critical loading levels for phosphorus in lake eutrophication." Mem. 1st ital. Idrobiol, 33: 53-58.
    18. Gobler C J, Davis T W, Coyne K J, and Boyer G L, 2007. "Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York Lake." Harmful Algal 6(1): 119-133.
    19. Paerl, Hans W, and Timothy G Otten, 2013. "Harmful cyanobacterial blooms: causes, consequences, and controls." Microbial ecology 65(4): 995-1010.
    20. Hans X H, Paerl W, Qin B Q, Zhu G W, and Gao G, 2010. "Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China." Limnology and Oceanography 55(1): 420-432.
    21. Guildford, Stephanie J, and Robert E Hecky, 2000. "Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?" Limnology and oceanography 45(6): 1213-1223.
    22. Paerl H W, and Fulton R S, 2006. "Ecology of harmful cyanobacteria." In Ecology of harmful algal, Springer, Berlin, Heidelberg: 95-109.
    23. Whitton B A, and Potts M, 2000. “Freshwater blooms, in: The Ecologies of Cyanobacteria.” Kluwer Academic Publishers, Dortrecht NL, 149–194.
    24. Wang Y, Jiao N Z, 2000. Research Methods of Upward Effects of Nutrients on Phytoplankton Growth[J]. Marine Science,11:16-18. (In Chinese)
    25. Research and Management of Nutrition[J]. Journal of Nature, Special Topics, 24(2): 63-68. (In Chinese)
    26. Jiang Y, Gan X H, Tang X Y, 2006. “Effects of nitrogen and phosphorus nutrition factors on the growth of Heterosigma akashiide.” Acta Applied Ecology, 17(3): 557-59. (In Chinese)
    27. Jin X C, 1995. Lake Environment in China[M]. Beijing: Ocean Press. (In Chinese)
    28. Zheng S F, Yang S W, Jin X C, 2005. Nutritional kinetics of the growth of Microcystis aeruginosa[J]. Environmental Science, 26(2): 152-156. (In Chinese)
    29. Yang W, Sun L, Yuan Y C, 2007. Effects of alkalinity level on the growth and competition of Microcystis aeruginosa and Scenedesmus tetracera[J]. Journal of Agricultural Environment Sciences, 26(4):1264- 1268. (In Chinese)
    30. Yan H Z, Gong W Q, Mei G J, 2009. Evaluation and Analysis of Water Eutrophication and Bioremediation Technology[J]. Anhui Agricultural Sciences, 37(34):17003-17006. (In Chinese)
    31. Wang R J, Zhao X, Cao R Y, 2005. Influencing factors and mechanism of phosphorus release from sediments in eutrophic water bodies[J]. Jiangsu Environmental Science and Technology, 4:47-49. (In Chinese)
    32. Martin J H, Fitzwater S E, Gordon R M, 1990. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global Biogeochemical Cycles, 4(1): 5-12.
    33. Martin J H, Fitzwater S E, 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 331(6154): 341-343.
    34. Shapiro J, 1967. Iron available to algal. Chemical environment in the aquatic habitat[J]. North-Holland, 219-228.
    35. Ahern K S, Ahern C R, Udy J W, 2007. Nutrient additions generate prolific growth of Lyngbya majuscula (cyanobacteria) in field and bioassay experiments[J]. Harmful Algal, 6(1): 134-151.
    36. Liu J, Zhao H T, Sheng H J, 2011. Effects of Fe3+ on growth and calcium/magnesium ions uptakes of three common algal in Taihu Lake[J]. Environmental Science & Technology, 34(1): 59-64. (In Chinese)
    37. Huang Z F, Liu C M, Liu B, 2009. The effect of iron and manganese trace elements on the growth of freshwater algae[J]. Journal of Beijing Normal University (Natural Science Edition), 45(5/6): 697-611. (In Chinese)
    38. Li L, Zhu W, Luo Y G, 2012. The influence of calcium and magnesium ions on the growth of Microcystis under the action of water flow[J]. Environmental Science and Technology, 35(5): 9-13. (In Chinese)
    39. Guo L L, Zhu W, Li M, 2013. Effects of main cations in water on the growth and polysaccharides of Microcystis aeruginosa[J]. Acta Eco-Environment, 22(8): 1358-1364. (In Chinese)
    40. Xing W, Li D H, Shen Y W, 2006. The relationship between the changes of iron concentration of different forms and physical and chemical factors in the experimental enclosure of Dianchi Lake[J]. Chinese Journal of Hydrobiology, 30(2): 146-151. (In Chinese)
    41. Bi X D, Zhang S L, Dai W, 2013. Effects of Lead (II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa[J]. Water Science & Technology, 67(4): 803-809.
    42. Poliak Yu M, Zaytseva T B, Petrova V N, and Medvedeva N G, 2011. "Development of mass cyanobacteria species under heavy metals pollution." Hydrobiological Journal 47(3).
    43. Baptista, Mafalda S, and Teresa Vasconcelos M, 2006. "Cyanobacteria metal interactions: requirements, toxicity, and ecological implications." Critical reviews in microbiology, 32(3): 127-137.
    44. Wang Y W, Zhao J, Li J H, 2011. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa[J]. Current Microbiology, 62(2):679-683.
    45. Yan R R, Pang Y, Zhao W, 2008. The influence of hydrodynamics in circulation-type waters on algae growth[J]. China Environmental Science, 28(9): 813-817. (In Chinese)
    46. Niu X J, 2006. Research progress on the mechanism of eutrophication and bloom outbreak[J]. Sichuan Environment, 3:73-76. (In Chinese)
    47. Mantin J H, 1990. Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycle, 4:5-12.
    48. Rueter J G, Peterson R R, 1987. Micronutrient effects on cyanobacteria growth and physiology. New Zealand Journal of Marine and Freshwater Research, 21:435-445.
    49. Wurtsbaugh W A, 1983. Home A.J. Iron in eutrophic Clear Lake,Califomia its importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic Sciences, 40:1419-1429.
    50. Richerson PJ, 1994. The causes and control of algal blooms in Clear Lake: Clean lakes diagnostic/feasibility study for Clear Lake, Califomia. University of Califomia, Davis.
    51. Li X P, 1998. Iron cycling and its effect on algal growth in Clear Lake, California. [Ph.D. Thesis], University of California, Davis.
    52. Chang C Y, Kuwabara J S, Pasilis S P, 1992. Phosphate and iron limitation of phytoplankton biomass in Lake Tahoe. Canadian Journal of Fisheries and Aquatic Sciences, 49:1206-1215.
    53. Lammers P J, 1982. Iron acquisition by cyanobacteria: siderophone production and iron transport by Anabaena. [Ph.D. Thesis], Portland State University, Oregon, 134.
    54. Morton S D, Lee T H, 1974. Algal blooms: possible effects of iron. Environmental Science and Technology, 8(7):673-674.
    55. Goldman C R, 1960. Molybdenum as a factor limiting primary productivity in Castle Lake. Califormia Science, 132:1016-1017.
    56. Goldman, Charles R, 1960. "Primary productivity and limiting factors in three lakes of the Alaska Peninsula." Ecological Monographs, 30(2): 207-230.
    57. Axler R P, Gersberg R M, and Goldman C R, 1980. "Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California." Canadian Journal of Fisheries and Aquatic Sciences, 37(4): 707-712.
    58. Vega J M, Herrera J, Aparicio P J, Paneque A, Losada M, 1971. Role of Molybdenum in Nitrate Reduction. Chlorella, Plant Physiology, 48(3), Pages 294–299.
    59. Howarth, Robert W, and Jonathan J C, 1985. "Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters." Science, 229 (4714): 653-655.
    60. Azov Y, 1982. Effect of pH on inorganic carbon uptake in algal cultures. Applied Environmental Microbiology Journal, 43:1300–1306.
    61. Oliver R L, Ganf G G, 2000. Freshwater Bloom[A]. Potts M. The Ecology of Cyanobacteria[C]. Netherlands: Kluwer Academic Publishers, 149-194.
    62. Chen C Y, Durbin E G, 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Marine Ecology Progress Series, 109: 83–94.
    63. Goldman J C, 1973. Letter: Carbon dioxide and pH: Effect on species succession of algal. Science, 182: 306–307.
    64. Hansen P J, 2002. Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquatic Microbial Ecology, 28: 279–288.
    65. Rotatore C, Colman B, 1991. The acquisition and accumulation of inorganic carbon by the unicellular green alga Chlorella ellipsoidea. Plant Cell Environment Journal, 14: 377–382.
    66. Moss B, 1973. The influence of environmental factors on the distribution of freshwater algal: an experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. The Journal of Ecology, pp.157-177.
    67. Caraco N F and Miller R, 1998. Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 55(1): 54-62.
    68. Qiu B and Gao K, 2002. Effects of CO2 Enrichment on the Bloom-forming Cyanobacterium Microcystis Aeruginosa (Cyanophyceae): Physiological Responses and Relationships with the Availability of Dissolved Inorganic Carbon. Journal of Phycology, 38(4): 721-729.
    69. Bell T A, Sen-Kilic E, Felföldi T, Vasas G, Fields M W and Peyton B M, 2018. Microbial community changes during a toxic cyanobacterial bloom in an alkaline Hungarian lake. Antonie Van Leeuwenhoek, 111(12): 2425-2440.
    70. Dwivedi A, Srinavas U K, Singh H N and Kumar H D, 1994. Regulatory effect of external pH on the intracellular pH in alkalophilic cyanobacteria Microcystis aeruginosa and Hapalosiphon welwitschii. The Journal of General and Applied Microbiology, 40(3): 261-263.
    71. Schulz K G, Riebesell U, Rost B, Thoms S and Zeebe R E, 2006. Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Marine chemistry, 100(1-2): 53-65.
    72. Badger, Murray R, Aaron Kaplan, and Joseph A. Berry, 1980. "Internal inorganic carbon pond of Chlamydomonas reinhardtii: evidence for a carbon dioxide-concentrating mechanism." Plant physiology, 66(3): 407-413.
    73. Sun L, Kan Y Q, Zhang D M, 2007. The influence of inorganic carbon on the growth and community structure of planktonic algae[J]. Environmental Pollution and Control, 29(5): 352-356. (In Chinese)
    74. Verjak M, Savsek T, Stuhler E A, 1998. System dynamics of eutrophication process in lakes[J]. Eutropean Journal of Operational Research, 1098:442-451.
    75. Stumm W, Morgan J J, 1987. Tang H X and other translations. Water Chemistry-Introduction to Natural Water Chemistry Balance[M]. Beijing: Science Press, 91- 170. (In Chinese)
    76. Dwivedi A, Srinavas U K, Singh H N and Kumar H D, 1994. Regulatory effect of external pH on the intracellular pH in alkalophilic cyanobacteria Microcystis aeruginosa and Hapalosiphon welwitschii. The Journal of General and Applied Microbiology, 40(3): 261-263.
    77. Schulz K G, Riebesell U, Rost B, Thoms S and Zeebe R E, 2006. Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Marine chemistry, 100(1-2): 53-65.
    78. Shapiro J, 1984. Blue -green dominance in lakes: the role and management significance of pH and CO2 [J]. Internationale Revue Gesamten Hydrobiologie, 69: 765-780.
    79. Shapiro J, 1990.Current beliefs regarding dominance of blue greens: the case for the importance of CO2 and pH[J]. Verhandlungen des Internationalen Verein Limnologie, 24: 38-54.
    80. Shapiro J, 1997. The role carbon dioxide in the initiation and maintenance of blue-greens dominance in lakes[J]. Freshwater Biology, 37: 307-323.
    81. Hornstrom E, 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH[J]. Hydrobiological, 470: 115-126.
    82. Long E B, 1975.The Interaction of Phytoplankton and the Bicarbonate System[D]. Kent State University.
    83. Liu C G, Jin X C, Sun L, 2005. Effects of pH on growth and species of algal in freshwater [J]. Journal of Agro-environment Science, 24(2): 294-298. (In Chinese)
    84. Ma Z Y, Chu Z S, Hu X Z, 2005. Effect of pH on competition of M. aeruginosa and S. quadricauda at different phosphorus mass concentration[J]. Research of Environmental Science, 18(5): 30-33. (In Chinese)
    85. Xu H, Liu Z P, Yuan L, and Yang L Z, 2009. "The effect of pH on the growth of several freshwater algal." PhD diss. (In Chinese)
    86. Gao H, Zhu T, Xu M, Wang S, Xu X and Kong R, 2016. pH‐dependent gas vesicle formation in Microcystis. FEBS letters 590(18), 3195-3201.
    87. Goldman, Charles R, 1960. "Primary productivity and limiting factors in three lakes of the Alaska Peninsula." Ecological Monographs, 30 (2): 207-230.
    88. Yan H Z, Gong W Q, Mei G J, 2009. Evaluation of Water Eutrophication and Bioremediation Technology[J]. Anhui Agricultural Sciences, 37(34): 17003-17006. (In Chinese)
    89. Joehnk, Klaus D, Huisman J E F, Jonathan S, Sommeijer B E N, Petra M V, and Jasper M, 2008. "Summer heatwaves promote blooms of harmful cyanobacteria." Global change biology 14 (3): 495-512.
    90. Paerl, Hans W, and Jef Huisman, 2008. "Blooms like it hot." Science 320(5872): 57-58.
    91. Butterwick C, Heaney S I, and Talling J F, 2005. "Diversity in the influence of temperature on the growth rates of freshwater algal, and its ecological relevance." Freshwater Biology, 50 (2): 291-300.
    92. Reynolds, Colin S. The ecology of phytoplankton. Cambridge University Press, 2006.
    93. Peeters, Frank, Dietmar S, Andreas L, and David M L, 2007. "Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate." Global Change Biology, 13 (9): 1898-1909.
    94. Suikkanen, Sanna, Maria L, and Maija H. "Long-term changes in summer phytoplankton communities of the open northern Baltic Sea." Estuarine, Coastal and Shelf Science, 71 (3-4): 580-592.
    95. Wagner, Carola, and Rita A. "Cyanobacteria dominance: quantifying the effects of climate change." Limnology and Oceanograph,y 54 (6-2): 2460-2468.
    96. Huisman, Jef, and Florence D H, 2005. "Population dynamics of harmful cyanobacteria." In Harmful cyanobacteria, 143-176. Springer, Dordrecht.
    97. Huisman, Jef, Jonathan S, Jasper M. S, Petra M V, Edwin W A, Kardinaal, Jolanda M H, Verspagen, and Ben S, 2004. "Changes in turbulent mixing shift competition for light between phytoplankton species." Ecology, 85(11): 2960-2970.
    98. Kahru, Mati, Juha-Markku L, and Ove R, 1993. "Cyanobacterial blooms cause heating of the sea surface." Marine Ecology Progress Series, 1-7.
    99. Ibelings, Bas W, Marijke V, Hans F J, Los, Diederik T. van der Molen, and Wolf M M, 2003. "Fuzzy modeling of cyanobacterial surface waterblooms: validation with NOAA‐AVHRR satellite images." Ecological Applications, 13 (5): 1456-1472.
    100. Paerl H W, Hall N S, and Elizabeth S. C, 2011. "Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change." Science of the total environment 409 (10): 1739-1745.
    101. Whitton, Brian A, and Malcolm P, 2012. "Introduction to the cyanobacteria." In Ecology of Cyanobacteria II, 1-13. Springer, Dordrecht.
    102. Mazur M, Hanna, Lidia Ż, and Marcin P, 2005. "The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdańsk, southern Baltic Sea." Journal of applied phycology, 17(2): 171-179.
    103. Moisander P H, McClinton E I I, and Hans W P, 2002. "Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria." Microbial ecology, 43 (4): 432-442.
    104. Padisak J, 1997. "Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology." Archiv Für Hydrobiologie Supplementband Monographische Beitrage, 107(4): 563-593.
    105. Stüken, Anke, Jacqueline R, Tina E, Karina P, Mike H, Brigitte N, Ulf K, and Claudia W, 2006. "Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides." Phycologia, 45 (6): 696-703.
    106. Wiedner, Claudia, Jacqueline R, Rainer B, and Brigitte N, 2007. "Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions." Oecologia, 152 (3): 473-484.
    107. Chapman, Andrew D, and Claire L S, 1997. "Recent Appearance of Cylindrospemopsis (Cyanobacteiua) in five Hypereutrophic Florida Lakes 1." Journal of Phycology, 33 (2): 191-195.
    108. Gao Y X, 2006. The effect of hydrometeorological factors on the eutrophication and algae growth of Taihu Lake[D]. Yangzhou University. (In Chinese)
    109. Xue F, Zhou W R, Xu X M, 2005. Causes and harms of eutrophication in aquaculture waters[J]. Jiangsu Agricultural Sciences, 6:121-124,148. (In Chinese)
    110. Gao Y X, 2006. The effect of hydrometeorological factors on the eutrophication and algae growth of Taihu Lake[D]. Yangzhou University. (In Chinese)
    111. Chen A M, 2008. The cause and mechanism of lake eutrophication[J]. Guangdong Water Resources and Hydropower, 6(1):34-37. (In Chinese)
    112. Rippka R, 1988. "Isolation and purification of cyanobacteria." Methods in enzymology 167: 3-27.
    113. Shapiro J, 1984. Blue -green dominance in lakes:the role and management significance of pH and CO2 [J]. Internationale Revue der gesamten Hydrobiologie, 765-780.
    114. Shapiro J, 1990. Current beliefs regarding dominance of blue greens:the case for the importance of CO2 and pH[J]. Verh Int Ver Limnol, 24: 38-54.
    115. Shapiro J, 1997. The role carbon dioxide in the initiation and maintenance of blue-greens dominance in lakes[J]. Freshwater Biology, 37: 307-323.
    116. Hornstrom E, 2002. Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH[J]. Hydrobiological, 470: 115-126.
    117. Long E B, 1975. The Interaction of Phytoplankton and the Bicarbonate System[D]. Kent State University.
    118. Liu C G, Jin X C, S L, 2005. Effects of pH on growth and species of algal in freshwater [J]. Journal of Agro-environment Science, 24(2): 294-298. (In Chinese)
    119. Ma Z Y, Chu Z S, Hu X Z, 2005. Effect of pH on competition of M. aeruginosa and S. quadricauda at different phosphorus mass concentration[J]. Research of Environmental Science, 18(5): 30-33. (In Chinese)
    120. Gao H, Zhu T, Xu M, Wang S, Xu X and Kong R, 2016. pH‐dependent gas vesicle formation in Microcystis. FEBS letters 590(18), 3195-3201.
    121. Yuan L N, Song W, Xiao L, 2008. Study on the effect of multiple environmental factors on the growth of Microcystis aeruginosa. Journal of Nanjing University (Natural Science), 44(4): 408—414. (In Chinese)
    122. Kim S and Kim H S, 2014. Effects of Alkalinity and Hardness on the Chlorophyll-α Concentration. Journal of Korean Society on Water Environment, 30(1), pp.25-30.
    123. Lee B D, Apel W A and Walton M R, 2004: Screening of cyanobacterial species for calcification, Biotechnology Program, 20:1345–1351.
    124. Kranz S A, Gladrow D W, Nehrke G, Langer G, and Rosta B: Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium, Limnol. Oceanogr., 55, 2563–2569.
    125. Obst M, Dynes J J, Lawrence J R, Swerhone G D W, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T and Hitchcock A P, 2009: Precipitation of amorphous CaCO3 (aragonitelike) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process, Geochimi. Cosmochimi. Ac., 73, 4180–4198.
    126. Huang Y L, Ji D B, Chen M X, 2008. The influence of water pH on the growth and disappearance of cyanobacteria blooms (J). People's Yangtze River, 39(2) 63-65. (In Chinese)
    127. Wu J, Kong Q, Yang L Y, 2009. The influence of the growth of Microcystis aeruginosa on the pH and nitrogen transformation of the culture medium (J). Lake Science, 21 (1): 123-127 (In Chinese)
    128. Zhang Q T, Wang X H, Lin C, Hu G K and Guo Y, 2011. Study on the relationship between water pH and the proliferation of Microcystis aeruginosa (Doctoral dissertation). (In Chinese)
    129. Verjak M, Savsek T, Stuhler E A, 1998. System dynamics of eutrophication process in l akes[J]. Eutropean Journal of Operational Research, (1098):442-451.
    130. Kang L J, Pan X J, Chang F Y, Li D H, Shen Y W and Liu Y D, 2008. The effect of increased HCO 3-alkalinity on the photosynthetic activity and ultrastructure of Microcystis aeruginosa. Acta Plant Science, 26(1): 70- 75. (In Chinese)
    131. Lemos, Rita V, Seiya T, Pablo L, Yoshihide T, Akihiro O, and Stefano F, 2021. "Extracellular electron transfer by Microcystis aeruginosa is solely driven by high pH." Bioelectrochemistry 137: 107637.
    132. Tailing J F, 1976. The depletion of carbon dioxide from lake water by phytoplankton[J]. J Ecol,1976,64:79—121.
    133. Bie Z, Ito Ti, Shinohara Y, 2004. Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce[J]. Scientia Horticulture, 99:215-224
    134. Alshammary S F, Qian Y L, Wallner S J, 2004. Growth response of four turfgrass species to salinity[J]. Agricultural water management, 66: 97-111.
    135. Li N, Bi Y H, Gao D W, Hu Z Y and Ren N Q, 2011. The influence of atmospheric CO2 concentration changes on the growth of Microcystis aeruginosa. Chinese Journal of Hydrobiology, 35(4): 698-702. (In Chinese)
    136. Martin J H, Fitzwater S E, 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 331(6154): 341-343.
    137. Jin X C, Tu Q Y, 1990. Rules for Investigation of Lake Eutrophication[M]. Beijing: China Environmental Science Press, 239-285. (In Chinese)
    138. Liu R X, Tang H X, Lao W X, 2002. Advances in biosorption mechanism and equilibrium modeling for heavy metals on biomaterials[J]. Progress Chemistry, 2: 87-92. (In Chinese)
    139. Easthope M P, Howard A, 1999. Simulating cyanobacterial growth in a lowland reservoir[J]. Science of the Total Environment, 241(1-3): 17-25.
    140. Li L, Zhu W, and Luo Y G, 2012. "The effect of calcium and magnesium ions on the growth of Microcystis aeruginosa under the action of water current." PhD diss. (In Chinese)
    141. Foulkes E C, 2000. "Transport of toxic heavy metals across cell membranes (44486)." Proceedings of the Society for Experimental Biology and Medicine 223(3): 234-240.
    142. Wang Y W, Zhao J, Li J H, 2011. Effects of Calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa[J]. Current Microbiology, 62: 679-683.
    143. Lemos, Rita V, Seiya T, Pablo L, Yoshihide T, Akihiro O, and Stefano F, 2021. "Extracellular electron transfer by Microcystis aeruginosa is solely driven by high pH." Bioelectrochemistry 137: 107637.
    144. Edmondson W, and Lehman J T, 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr 26(1).
    145. Hemond H F and Lin K, 2010. Nitrate suppresses internal phosphorus loading in an eutrophic lake. Water research 44(12), 3645-3650.
    146. Welch E B, 2009. “Should nitrogen be reduced to manage eutrophication if it is growth limiting?” Evidence from Moses Lake. Lake and Reservoir Management, 25(4), 401-409.
    147. Fastner J, Abella S, Litt A, Morabito G, Vörös L, Pálffy K, Straile D, Kümmerlin R, Matthews D, Phillips M G and Chorus I, 2016. Combating cyanobacterial proliferation by avoiding or treating inflows with high P load—experiences from eight case studies. Aquatic Ecology, 50(3): 367-383.
    148. Newcombe G, House J, Ho L, Baker P and Burch M, 2010. Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Water Quality Research Australia (WQRA), Reserach Report 74.
    149. Heo W M and Kim B, 2004. The effect of artificial destratification on phytoplankton in a reservoir. Hydrobiologia, 524(1), 229-239.
    150. Antenucci J P, Ghadouani A, Burford M A and Romero J R, 2005. The long‐term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir. Freshwater Biology, 50(6), 1081-1093.
    151. Jungo E, Visser P M, Stroom J and Mur L R, 2001. Artificial mixing to reduce growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam: an evaluation of 7 years of experience. Water Science and Technology: Water Supply 1(1), 17-23.
    152. Oskam G, 1978. Light and zooplankton as algae regulating factors in eutrophic Biesbosch reservoirs: With 4 figures and 3 tables in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 20(3), 1612-1618.
    153. Steinberg C and Zimmermann G M, 1988. Intermittent destratification: a therapy measure against cyanobacteria in lakes. Environmental Technology 9(4), 337-350.
    154. Lindenschmidt K E, 1999. Controlling the growth of Microcystis using surged artificial aeration. International review of hydrobiology, 84(3), 243-254.
    155. Li M, Wu Y J, Yu Z L, Sheng G P and Yu H Q, 2009. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water research, 43(5), 1247-1256.
    156. Schriver P, Bogestrand J, Jeppesen E and Sondergaard M, 1995. Impact of submerged macrophytes on fish-zoopla phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology, 33(2), 255-270.
    157. Lammens E H, 2001. Consequences of Biomanipulation for Fish and Fisheries, FAO.
    158. Phull S S, Newman, A P, Lorimer J P, Pollet B and Mason T J, 1997. The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157-164.
    159. Suslick K S, 1990. Sonochemistry. Science, 247(4949), 1439-1445.
    160. Lee T J, Nakano K and Matsumara M, 2001. Ultrasonic Irradiation for Blue-Green Algae Bloom Control. Environmental Technology, 22(4): 383-390.
    161. Rajasekhar P, Fan L, Nguyen T and Roddick F A, 2012b. A review of the use of sonication to control cyanobacterial blooms. Water Research, 46(14): 4319-4329.
    162. Zhang G, Zhang P, Wang B and Liu H, 2006. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry, 13(5): 446-450.
    163. Fan J J, Rao L, Chiu Y T and Lin T F, 2016. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE