簡易檢索 / 詳目顯示

研究生: 陳冠旭
Chen, Kuan-Hsu
論文名稱: 原位還原及聚合反應製備Ag@Glycopolymer奈米聚集顆粒應用表面增強拉曼光譜於細胞內H2O2檢測
In-Situ Reduction and Polymerization Reactions for Fabricating Ag@Glycopolymer Nano-aggregates for Intracellular H2O2 Sensing via Surface-Enhanced Raman Scattering
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 83
中文關鍵詞: 銀奈米顆粒表面增強拉曼散射H2O2檢測生物檢測應用
外文關鍵詞: Ag nanoparticles, SERS, H2O2 detection, biosensing
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米顆粒和表面增強拉曼散射(Surfaced-Enhancement Raman Scattering;SERS) 已在多個領域得到廣泛研究,包括細菌、農藥、人體代謝物甚至SARS-CoV-2的檢測。其中,表現出強烈SERS訊號增強的銀奈米顆粒也獲得了廣泛的討論和研究。然而,同時具有高穩定性和固有SERS訊號的銀奈米顆粒的合成在研究中受到的關注相對較少。在本項研究中,我們透過鄰-硝基苯基-β-吡喃半乳糖苷(ONPG) 與銀離子發生共還原反應並在顆粒表面進行原位聚合,合成了含聚苯胺及半乳糖結構的銀聚集結構奈米顆粒(Ag@PGlyco-PSMA ANPs)。此外,聚(苯乙烯-馬來酸)鈉鹽溶液(PSMA)作為反應終止劑,防止Ag@PGlyco-PSMA ANPs被還原劑過度還原,並且作為保護層覆蓋在奈米顆粒的表面。Ag@PGlyco-PSMA ANPs自身帶有聚苯胺相關的SERS訊號,並表現出卓越的穩定性以及增強分析物SERS訊號的能力。此外,Ag@PGlyco-PSMA ANPs 表現出極佳的生物相容性,特別是在細菌相容性方面。隨後,我們利用Ag@PGlyco-PSMA ANPs對H2O2的SERS訊號響應以及正常細胞和癌細胞之間 H2O2濃度的差異,透過量化SERS訊號強度和SERS mapping的差異進行正常細胞和癌細胞的區分。

    Nanoparticles and surface-enhanced Raman scattering (SERS) have been extensively investigated in diverse fields, including the detection of bacteria, pesticides, human metabolites, and even SARS-CoV-2. Among these, silver nanoparticles exhibiting strong SERS enhancement have been extensively researched. However, the synthesis of silver nanoparticles with both high stability and intrinsic SERS signal has received comparatively less attention in investigations. In this work, we synthesized polyaniline-containing galactosylated Ag aggregation-structure nanoparticles (Ag@PGlyco-PSMA ANPs) via an in-situ reduction and polymerization of ortho-nitrophenyl-β-galactopyranoside assisted by Ag nucleation. Moreover, poly(styrene-alt-maleic acid) sodium salt solution (PSMA) is incorporated as a reaction terminator to prevent excessive reduction of the Ag@PGlyco-PSMA ANPs, and it also acts as a protective layer and covers the surface of the nanoparticles. The Ag@PGlyco-PSMA ANPs have intrinsic polyaniline-based SERS signal and exhibit exceptional stability and a significant enhancement of the SERS signal for the analyte. Furthermore, the Ag@PGlyco-PSMA ANPs demonstrate exceptional biocompatibility, particularly in terms of their significantly higher bacterial compatibility. Subsequently, we utilized the SERS signal response of Ag@PGlyco-PSMA ANPs to H2O2 and the disparity in H2O2 concentration between normal cells and cancer cells. By quantifying the extent of decrease in SERS intensity and difference of SERS mapping, we can make a distinction between normal cells and cancer cells.

    致謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Raman Spectroscopy 1 1.1.1 Raman scattering 1 1.1.2 Surface-Enhanced Raman Scattering (SERS) 2 1.2 Nanomaterials 3 1.2.1 Noble metal nanoparticles and localized surface plasmon resonance effect 4 1.2.2 Silver nanoparticles and protective layer 6 1.2.3 Application of polyaniline in nanoparticles 7 1.3 SERS detection for bio-applications 9 1.3.1 SERS detection for H2O2 10 Chapter 2 Motivation 12 Chapter 3 Materials and Methods 14 3.1 Materials 14 3.2 Equipment 16 3.3 Methods 17 3.3.1 In-situ synthesis of Ag@PGlyco-PSMA ANPs 17 3.3.2 In-situ synthesis of Ag@PGlyco-PSMA-related ANPs 17 3.3.3 Synthesis of AgAu@PGlyco-PSMA ANPs 17 3.3.4 In-situ synthesis of Au@PGlyco-PSMA ANPs 18 3.3.5 SERS measurement of analyte molecule 18 3.3.6 Bacterial viability 19 3.3.7 LIVE/DEAD BacLight bacteria viability 19 3.3.8 In vitro cell viability 20 3.3.9 The release of silver ions in solution 20 3.3.10 Cell uptake quantification 21 3.3.11 Intracellular SERS measurement 21 3.3.12 In vitro SERS mapping 21 Chapter 4 Results and Discussion 23 4.1 In situ synthesis of Ag@PGlyco-PSMA ANPs 23 4.2 SERS signal analysis of Ag@PGlyco-PSMA ANPs 25 4.3 The surface structure and elemental analysis of the Ag@PGlyco-PSMA ANPs 28 4.4 Optimization of polymer types and synthesis parameters of Ag@PGlyco-PSMA ANPs 30 4.4.1 Effects of PSMA and reductant to synthesize Ag@PGlyco-PSMA ANPs 30 4.4.2 Effects of protective polymer types on Ag@PGlyco-polymer ANPs 31 4.5 Stability of Ag@PGlyco-PSMA ANPs 33 4.6 SERS detection of analytes by Ag@PGlyco-PSMA ANPs 38 4.7 Comparison of Ag@PGlyco-PSMA NPs and Au@PGlyco-PSMA ANPs 43 4.8 Synthesize AgAu@PGlyco-PSMA ANPs and perform particle property analysis 45 4.8.1 Effect of different reducing agents on AgAu@PGlyco-PSMA ANPs synthesis 45 4.8.2 Characterization of AgAu@PGlyco-PSMA ANPs 46 4.9 SERS detection for biological applications 58 4.9.1 Biocompatibility of Ag@PGlyco-PSMA and related nanoparticles 58 4.9.2 H2O2 responsibility and in-vitro SERS measurement and mapping 66 Chapter 5 Conclusion 70 REFERENCE 71

    1. Raman, C. V.; Krishnan, K. S., A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501-502.
    2. Undurti, S.; Sandhya, S.; Vathsan, R.; Narayanan, A., Weak Value Amplification in Resonance Fluorescence. Current Science 2015, 109, 2002.
    3. Liu, K.; Zhao, Q.; Li, B.; Zhao, X., Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Frontiers in Bioengineering and Biotechnology 2022, 10, 856591.
    4. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275 (5303), 1102-1106.
    5. Olson, T. Y.; Schwartzberg, A. M.; Orme, C. A.; Talley, C. E.; O'Connell, B.; Zhang, J. Z., Hollow gold− silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. The Journal of Physical Chemistry C 2008, 112 (16), 6319-6329.
    6. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
    7. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84 (1), 1-20.
    8. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society 1977, 99 (15), 5215-5217.
    9. Kucheyev, S. O.; Hayes, J. R.; Biener, J.; Huser, T.; Talley, C. E.; Hamza, A. V., Surface-enhanced Raman scattering on nanoporous Au. Applied Physics Letters 2006, 89 (5).
    10. Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L., A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9 (2), 57.
    11. Maher, R. C., SERS Hot Spots. In Raman Spectroscopy for Nanomaterials Characterization, Kumar, C. S. S. R., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 215-260.
    12. Wang, K.; Li, S.; Petersen, M.; Wang, S.; Lu, X., Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. Nanomaterials (Basel, Switzerland) 2018, 8.
    13. 'Plenty of room' revisited. Nature Nanotechnology 2009, 4 (12), 781-781.
    14. Md Saleh, N.; Abdul Aziz, A., Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle. Journal of Physics: Conference Series 2018, 1083, 012041.
    15. Asgharian, A.; Yadipour, R.; Kiani, G.; Baghban, H., Proposing a Numerical Method to Calculate the Absorbed Power of Plasmonic Nanoparticles (Au, Ag, Al, and Cu) with Different Morphologies Under Solar Irradiance. Plasmonics 2022, 17 (4), 1527-1547.
    16. Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W., Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Accounts of Chemical Research 2022, 55 (6), 831-843.
    17. Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M., LSPR-based nanobiosensors. Nano Today 2009, 4 (3), 244-251.
    18. Aljohani, F. S.; Hamed, M. T.; Bakr, B. A.; Shahin, Y. H.; Abu-Serie, M. M.; Awaad, A. K.; El-Kady, H.; Elwakil, B. H., In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific Reports 2022, 12 (1), 6269.
    19. Nuti, S.; Fernández-Lodeiro, C.; Fernández-Lodeiro, J.; Fernández-Lodeiro, A.; Pérez-Juste, J.; Pastoriza-Santos, I.; LaGrow, A. P.; Schraidt, O.; Luis Capelo-Martínez, J.; Lodeiro, C., Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes. Journal of Colloid and Interface Science 2022, 611, 695-705.
    20. Patil, T.; Gambhir, R.; Vibhute, A.; Tiwari, A. P., Gold Nanoparticles: Synthesis Methods, Functionalization and Biological Applications. Journal of Cluster Science 2023, 34 (2), 705-725.
    21. Wang, Y.; Zhang, X.; Wen, G.; Liang, A.; Jiang, Z., Facile synthesis of a highly SERS active nanosilver sol using microwaves and its application in the detection of E. coli using Victoria blue B as a molecular probe. Analytical Methods 2016, 8 (24), 4881-4887.
    22. Faghihi, F.; Hazendonk, P.; Montina, T., Investigation into the Mechanism and Microstructure of Reaction Intermediates in the Two-Phase Synthesis of Alkanethiol-Capped Silver Nanoparticles. Langmuir 2015, 31 (11), 3473-3481.
    23. Kneipp, K.; Dasari, R. R.; Wang, Y., Near-Infrared Surface-Enhanced Raman Scattering (NIR SERS) on Colloidal Silver and Gold. Applied Spectroscopy 1994, 48 (8), 951-955.
    24. Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J., Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics 2006, 8 (1), 165-170.
    25. Thermofisher. https://www.thermofisher.com/tw/zt/home/chemicals.html.
    26. Fareed, N.; Nisa, S.; Bibi, Y.; Fareed, A.; Ahmed, W.; Sabir, M.; Alam, S.; Sajjad, A.; Kumar, S.; Hussain, M.; Syed, A.; Bahkali, A. H.; Elgorban, A. M.; Qayyum, A., Green synthesized silver nanoparticles using carrot extract exhibited strong antibacterial activity against multidrug resistant bacteria. Journal of King Saud University - Science 2023, 35 (2), 102477.
    27. Hayat, P.; Khan, I.; Rehman, A.; Jamil, T.; Hayat, A.; Rehman, M. U.; Ullah, N.; Sarwar, A.; Alharbi, A. A.; Dablool, A. S.; Daudzai, Z.; Alamri, A. S.; Alhomrani, M.; Aziz, T., Myogenesis and Analysis of Antimicrobial Potential of Silver Nanoparticles (AgNPs) against Pathogenic Bacteria. Molecules 2023, 28 (2), 637.
    28. Alavi, M.; Hamblin, M. R., Antibacterial silver nanoparticles: effects on bacterial nucleic acids. Cellular, Molecular and Biomedical Reports 2023, 3 (1), 35-40.
    29. Yang, Z.; Su, H.-S.; You, E.-M.; Liu, S.; Li, Z.; Zhang, Y., High Uniformity and Enhancement Au@AgNS 3D Substrates for the Diagnosis of Breast Cancer. ACS Omega 2022, 7 (17), 15223-15230.
    30. Choi, N.; Dang, H.; Das, A.; Sim, M. S.; Chung, I. Y.; Choo, J., SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosensors and Bioelectronics 2020, 164, 112326.
    31. Su, X.; Wang, Y.; Wang, W.; Sun, K.; Chen, L., Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property. ACS Applied Materials & Interfaces 2016, 8 (16), 10201-10211.
    32. Yin, I. X.; Zhang, J.; Zhao, I. S.; Mei, M. L.; Li, Q.; Chu, C. H., The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int J Nanomedicine 2020, 15, 2555-2562.
    33. Pérez-Jiménez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B., Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical Science 2020, 11 (18), 4563-4577.
    34. Sportelli, M.; Izzi, M.; Volpe, A.; Clemente, M.; Picca, R.; Ancona, A.; Lugarà, P.; Palazzo, G.; Cioffi, N., The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics 2018, 7, 67.
    35. Liu, Z.; Wang, Y.; Zu, Y.; Fu, Y.; Li, N.; Guo, N.; Liu, R.; Zhang, Y., Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. Materials Science and Engineering: C 2014, 42, 31-37.
    36. Tiwari, A. K.; Gupta, M. K.; Pandey, G.; Tilak, R.; Narayan, R. J.; Pandey, P. C., Size and Zeta Potential Clicked Germination Attenuation and Anti-Sporangiospores Activity of PEI-Functionalized Silver Nanoparticles against COVID-19 Associated Mucorales (Rhizopus arrhizus). Nanomaterials 2022, 12 (13), 2235.
    37. Cruz Gomes da Silva, R. L.; Oliveira da Silva, H. F.; da Silva Gasparotto, L. H.; Caseli, L., How the interaction of PVP-stabilized Ag nanoparticles with models of cellular membranes at the air-water interface is modulated by the monolayer composition. Journal of Colloid and Interface Science 2018, 512, 792-800.
    38. Pastoriza-Santos, I.; Liz-Marzán, L. M., Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir 2002, 18 (7), 2888-2894.
    39. Ma, Q.; Hu, X.; Liu, N.; Sharma, A.; Zhang, C.; Kawazoe, N.; Chen, G.; Yang, Y., Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. Journal of colloid and interface science 2020, 569, 101-113.
    40. Shameli, K.; Ahmad, M. B.; Jazayeri, S. D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y., Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal 2012, 6 (1), 73.
    41. Guascito, M. R.; Chirizzi, D.; Picca, R. A.; Mazzotta, E.; Malitesta, C., Ag nanoparticles capped by a nontoxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Materials Science and Engineering: C 2011, 31 (3), 606-611.
    42. Meng, Y., A Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity. Nanomaterials 2015, 5 (2), 1124-1135.
    43. Nguyen, N. T.-P.; Nguyen, L. V.-H.; Thanh, N. T.; Van Toi, V.; Quyen, T. N.; Tran, P. A.; Wang, H.-M. D.; Nguyen, T.-H., Stabilization of silver nanoparticles in chitosan and gelatin hydrogel and its applications. Materials Letters 2019, 248, 241-245.
    44. Rather, R. A.; Sarwara, R. K.; Das, N.; Pal, B., Impact of reducing and capping agents on carbohydrates for the growth of Ag and Cu nanostructures and their antibacterial activities. Particuology 2019, 43, 219-226.
    45. Pradeepa, V.; Sujatha, M.; Sriram, T., Antiproliferative Effect of Silver Nanoparticles Synthesized Using Human Serum Albumin on MCF-7 Cell Line. Int. J. Pharma Bio Sci 2017, 8 (2), 126-133.
    46. Majeed, S.; Aripin, F. H. B.; Shoeb, N. S. B.; Danish, M.; Ibrahim, M. M.; Hashim, R., Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Materials Science and Engineering: C 2019, 102, 254-263.
    47. Kumar, A.; Das, N.; Satija, N. K.; Mandrah, K.; Roy, S. K.; Rayavarapu, R. G., A novel approach towards synthesis and characterization of non-cytotoxic gold nanoparticles using taurine as capping agent. Nanomaterials 2019, 10 (1), 45.
    48. Hameed, M. K.; Ahmady, I. M.; Han, C.; Mohamed, A. A., Efficient synthesis of amino acids capped gold nanoparticles from easily reducible aryldiazonium tetrachloroaurate (III) salts for cellular uptake study. Amino Acids 2020, 52, 941-953.
    49. She, Q.; Li, J.; Lu, Y.; Lin, S.; You, R., In situ synthesis of silver nanoparticles on dialdehyde cellulose as reliable SERS substrate. Cellulose 2021, 28 (17), 10827-10840.
    50. Du, J.; Liu, Z.; Han, B.; Li, Z.; Zhang, J.; Huang, Y., One-pot synthesis of the macroporous polyaniline microspheres and Ag/polyaniline core-shell particles. Microporous and Mesoporous Materials 2005, 84 (1), 254-260.
    51. Chia, Z.-C.; Yang, L.-X.; Cheng, T.-Y.; Chen, Y.-J.; Cheng, H.-L.; Hsu, F.-T.; Wang, Y.-J.; Chen, Y.-Y.; Huang, T.-C.; Fang, Y.-S.; Huang, C.-C., In Situ Formation of Au-Glycopolymer Nanoparticles for Surface-Enhanced Raman Scattering-Based Biosensing and Single-Cell Immunity. ACS Applied Materials & Interfaces 2021, 13 (44), 52295-52307.
    52. Sirohi, S.; Mittal, A.; Nain, R.; Jain, N.; Singh, R.; Dobhal, S.; Pani, B.; Parida, D., Effect of nanoparticle shape on the conductivity of Ag nanoparticle poly(vinyl alcohol) composite films. Polymer International 2019, 68 (12), 1961-1967.
    53. Takeshima, T.; Tada, Y.; Sakaguchi, N.; Watari, F.; Fugetsu, B., DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria. Nanomaterials 2015, 5 (1), 284-297.
    54. Izumi, C. M. S.; Andrade, G. F. S.; Temperini, M. L. A., Surface-Enhanced Resonance Raman Scattering of Polyaniline on Silver and Gold Colloids. The Journal of Physical Chemistry B 2008, 112 (51), 16334-16340.
    55. Khanna, P. K.; Singh, N.; Charan, S.; Viswanath, A. K., Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Materials Chemistry and Physics 2005, 92 (1), 214-219.
    56. Beck, F.; Loessl, M.; Baeumner, A. J., Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchimica Acta 2023, 190 (3), 91.
    57. Oliveira, B. B.; Ferreira, D.; Fernandes, A. R.; Baptista, P. V., Engineering gold nanoparticles for molecular diagnostics and biosensing. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (1), e1836.
    58. Xu, Q.; Xiao, F.; Xu, H., Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. TrAC Trends in Analytical Chemistry 2023, 161, 116999.
    59. Zhang, Q.; Ma, R.; Zhang, Y.; Zhao, J.; Wang, Y.; Xu, Z., Dual-Aptamer-Assisted Ratiometric SERS Biosensor for Ultrasensitive and Precise Identification of Breast Cancer Exosomes. ACS Sensors 2023, 8 (2), 875-883.
    60. Li, Q.; Huo, H.; Wu, Y.; Chen, L.; Su, L.; Zhang, X.; Song, J.; Yang, H., Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. Advanced Science 2023, 10 (8), 2202051.
    61. Li, H.; Geng, W.; Qi, Z.; Ahmad, W.; Haruna, S. A.; Chen, Q., Stimuli-responsive SERS biosensor for ultrasensitive tetracycline sensing using EDTA-driven PEI@CaCO3 microcapsule and CS@FeMMs. Biosensors and Bioelectronics 2023, 226, 115122.
    62. Shen, F.; Zhang, C.; Cai, Z.; Qiu, Z.; Wang, Y.; Liu, Z.; Guan, M.; Gao, F., Target-triggered core-satellite self-assemblies based on strong dipole plasmon Pt-tipped Au triangular nanoprism for dual-signal detection of telomerase and enhanced phototherapy. Chemical Engineering Journal 2022, 438, 135556.
    63. Li, H.; Merkl, P.; Sommertune, J.; Thersleff, T.; Sotiriou, G. A., SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. Advanced Science 2022, 9 (22), 2201133.
    64. Shim, J.-E.; Kim, Y. J.; Choe, J.-H.; Lee, T. G.; You, E.-A., Single-Nanoparticle-Based Digital SERS Sensing Platform for the Accurate Quantitative Detection of SARS-CoV-2. ACS Applied Materials & Interfaces 2022, 14 (34), 38459-38470.
    65. Rhee, S. G.; Bae, Y. S.; Lee, S. R.; Kwon, J., Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000, 2000 (53), pe1.
    66. Sundaresan, M.; Yu, Z. X.; Ferrans, V. J.; Irani, K.; Finkel, T., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995, 270 (5234), 296-9.
    67. Szatrowski, T. P.; Nathan, C. F., Production of large amounts of hydrogen peroxide by human tumor cells. Cancer research 1991, 51 (3), 794-798.
    68. Houstis, N.; Rosen, E. D.; Lander, E. S., Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440 (7086), 944-948.
    69. Pravda, J., Hydrogen peroxide and disease: towards a unified system of pathogenesis and therapeutics. Molecular Medicine 2020, 26 (1), 1-10.
    70. Jay, D.; Hitomi, H.; Griendling, K. K., Oxidative stress and diabetic cardiovascular complications. Free Radical Biology and Medicine 2006, 40 (2), 183-192.
    71. Gu, X.; Wang, H.; Schultz, Z. D.; Camden, J. P., Sensing Glucose in Urine and Serum and Hydrogen Peroxide in Living Cells by Use of a Novel Boronate Nanoprobe Based on Surface-Enhanced Raman Spectroscopy. Analytical Chemistry 2016, 88 (14), 7191-7197.
    72. Jiang, L.; He, C.-H.; Chen, H.-Y.; Xi, C.-Y.; Fodjo, E. K.; Zhou, Z.-R.; Qian, R.-C.; Li, D.-W.; Hafez, M. E., In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor. Analytical Chemistry 2021, 93 (37), 12609-12616.
    73. Zhang, C.; Liu, X.; Xu, Z.; Liu, D., Multichannel Stimulus-Responsive Nanoprobes for H2O2 Sensing in Diverse Biological Milieus. Analytical Chemistry 2020, 92 (18), 12639-12646.
    74. Li, X.; Duan, X.; Yang, P.; Li, L.; Tang, B., Accurate In Situ Monitoring of Mitochondrial H2O2 by Robust SERS Nanoprobes with a Au–Se Interface. Analytical Chemistry 2021, 93 (8), 4059-4065.
    75. Meng, T.; Han, J.; Zhang, P.; Hu, J.; Fu, J.; Yin, J., Introduction of the α-ketoamide structure: en route to develop hydrogen peroxide responsive prodrugs. Chemical Science 2019, 10 (30), 7156-7162.
    76. Kita, M.; Yamamoto, J.; Morisaki, T.; Komiya, C.; Inokuma, T.; Miyamoto, L.; Tsuchiya, K.; Shigenaga, A.; Otaka, A., Design and synthesis of a hydrogen peroxide-responsive amino acid that induces peptide bond cleavage after exposure to hydrogen peroxide. Tetrahedron Letters 2015, 56 (28), 4228-4231.
    77. Wu, Y.; Guo, T.; Qiu, Y.; Lin, Y.; Yao, Y.; Lian, W.; Lin, L.; Song, J.; Yang, H., An inorganic prodrug, tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy. Chemical Science 2019, 10 (29), 7068-7075.
    78. Lanje, A.; Sharma, S.; Pode, R., Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2010, 2, 478-483.
    79. Boyer, M. I.; Quillard, S.; Rebourt, E.; Louarn, G.; Buisson, J. P.; Monkman, A.; Lefrant, S., Vibrational Analysis of Polyaniline:  A Model Compound Approach. The Journal of Physical Chemistry B 1998, 102 (38), 7382-7392.
    80. Morávková, Z.; Dmitrieva, E., The First Products of Aniline Oxidation – SERS Spectroelectrochemistry. ChemistrySelect 2019, 4 (30), 8847-8854.
    81. Trchová, M.; Morávková, Z.; Dybal, J.; Stejskal, J., Detection of Aniline Oligomers on Polyaniline–Gold Interface using Resonance Raman Scattering. ACS Applied Materials & Interfaces 2014, 6 (2), 942-950.
    82. Louarn, G.; Lapkowski, M.; Quillard, S.; Pron, A.; Buisson, J. P.; Lefrant, S., Vibrational Properties of PolyanilineIsotope Effects. The Journal of Physical Chemistry 1996, 100 (17), 6998-7006.
    83. Cirić-Marjanović, G.; Trchová, M.; Stejskal, J., The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy 2008, 39, 1375-1387.
    84. Wang, Y.-p.; Wei, X.; Duan, J.; Yang, J.-h.; Zhang, N.; Huang, T.; Wang, Y., Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese Journal of Polymer Science 2017, 35 (3), 386-399.
    85. Izumi, C.; Constantino, V.; Da Costa Ferreira, A. M.; Temperini, M., Spectroscopic characterization of polyaniline doped with transition metal salts. Synthetic Metals 2006, 156, 654-663.
    86. Niaura, G.; Malinauskas, A., Structural changes in conducting form of polyaniline upon ring sulfonation as deduced by near infrared resonance Raman spectroscopy. Synthetic Metals - SYNTHET METAL 2004, 145, 105-112.
    87. de Santana, H.; Quillard, S.; Fayad, E.; Louarn, G., In situ UV–vis and Raman spectroscopic studies of the electrochemical behavior of N,N′-diphenyl-1,4-phenylenediamine. Synthetic Metals 2006, 156 (1), 81-85.
    88. Moravkova, Z.; Dmitrieva, E., Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry: In situ Raman spectroelectrochemistry of PANI - polarons and defects. Journal of Raman Spectroscopy 2017, 48.
    89. Li, T.; Vongehr, S.; Tang, S.; Dai, Y.; Huang, X.; Meng, X., Scalable Synthesis of Ag Networks with Optimized Sub-monolayer Au-Pd Nanoparticle Covering for Highly Enhanced SERS Detection and Catalysis. Scientific Reports 2016, 6 (1), 37092.
    90. Liu, J.; Wu, Z.; He, Q.; Tian, Q.; Wu, W.; Xiao, X.; Jiang, C., Catalytic Application and Mechanism Studies of Argentic Chloride Coupled Ag/Au Hollow Heterostructures: Considering the Interface Between Ag/Au Bimetals. Nanoscale Research Letters 2019, 14 (1), 35.
    91. Firet, N. J.; Blommaert, M. A.; Burdyny, T.; Venugopal, A.; Bohra, D.; Longo, A.; Smith, W. A., Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction. Journal of Materials Chemistry A 2019, 7 (6), 2597-2607.
    92. Kim, N.-Y.; Leem, Y.-C.; Hong, S.-H.; Park, J.-H.; Yim, S.-Y., Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. ACS Applied Materials & Interfaces 2019, 11 (6), 6363-6373.
    93. Rouxhet, P. G.; Misselyn-Bauduin, A. M.; Ahimou, F.; Genet, M. J.; Adriaensen, Y.; Desille, T.; Bodson, P.; Deroanne, C., XPS analysis of food products: toward chemical functions and molecular compounds. Surface and Interface Analysis 2008, 40 (3-4), 718-724.
    94. Stevens, J. S.; Schroeder, S. L. M., Quantitative analysis of saccharides by X-ray photoelectron spectroscopy. Surface and Interface Analysis 2009, 41 (6), 453-462.
    95. Golczak, S.; Kanciurzewska, A.; Fahlman, M.; Langer, K.; Langer, J. J., Comparative XPS surface study of polyaniline thin films. Solid State Ionics 2008, 179 (39), 2234-2239.
    96. Liu, H.; Zhang, J.; Ngo, H. H.; Guo, W.; Wu, H.; Cheng, C.; Guo, Z.; Zhang, C., Carbohydrate-based activated carbon with high surface acidity and basicity for nickel removal from synthetic wastewater. RSC Advances 2015, 5 (64), 52048-52056.
    97. de Morais, A.; Alves, J.; Lima, A.; Lira-Cantu, M.; Nogueira, A., Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO 2 /reduced graphene oxide films as electron transport layers. Journal of Photonics for Energy 2015, 5, 057408.
    98. Liu, T.-M.; Yu, J.; Chang, C. A.; Chiou, A.; Chiang, H. K.; Chuang, Y.-C.; Wu, C.-H.; Hsu, C.-H.; Chen, P.-A.; Huang, C.-C., One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery and catalysis. Scientific Reports 2014, 4 (1), 5593.
    99. Polyaniline, K.; Base, E.; Ibrahim, M.; Koglin, E., Spectroscopic study of polyaniline emeraldine base: Modelling approach. Acta Chim. Slov 2005, 52, 159-163.
    100. Coronado, E.; Encina, E.; Stefani, F., Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale. Nanoscale 2011, 3, 4042-59.
    101. Tang, Y.; Yu, X.; Pan, H.; Chen, J.; Audit, B.; Argoul, F.; Zhang, S.; Xu, J., Numerical Study of Novel Ratiometric Sensors Based on Plasmon–Exciton Coupling. Applied Spectroscopy 2017, 71 (10), 2377-2384.
    102. Alshalalfeh, M. M.; Saleh, T.; Al-Saadi, A., Silver colloid and film substrates in surface-enhanced Raman scattering for 2-thiouracil detection. RSC Adv. 2016, 6, 75282-75292.
    103. Priyadarshini, E.; Rawat, K.; Bohidar, H.; Rajamani, P., Dual-probe (colorimetric and fluorometric) detection of ferritin using antibody-modified gold@carbon dot nanoconjugates. Microchimica Acta 2019, 186, 687.
    104. Zhao, L.; Ren, X.; Yan, X., Assembly Induced Super-Large Red-Shifted Absorption: The Burgeoning Field of Organic Near-Infrared Materials. CCS Chemistry 2021, 3 (5), 678-693.
    105. Seo, Y. H.; Kim, S., Aggregation-induced emission nanoparticles with improved optical absorption for boosting fluorescence signal of tumors in vivo. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 280, 121534.
    106. Godovsky, D.; Varfolomeev, A.; Zaretsky, a.; Nayana, a., Preparation of nanocomposites of polyaniline and inorganic semiconductors. Journal of Materials Chemistry 2001, 11.
    107. Ni, Z.; Zhu, Y.; Liu, J.; Yang, L.; Sun, P.; Gu, M.; Huang, Z., Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions. Advanced Science 2020, 7, 2001321.
    108. Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H.; Kim, B.; Joo, S. H.; Lee, K., Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews 2018, 47.
    109. Sackmann, M.; Materny, A., Surface enhanced Raman scattering (SERS)—a quantitative analytical tool? Journal of Raman Spectroscopy 2006, 37 (1-3), 305-310.
    110. Wen, P.; Yang, F.; Hu, X.; Xu, Y.; Wan, S.; Chen, L., Optimized Design and Preparation of Ag Nanoparticle Multilayer SERS Substrates with Excellent Sensing Performance. Biosensors 2023, 13 (1), 52.
    111. Yang, K.; Wang, Z.; Zhang, J., High sensitivity D-shaped fiber decorated with self-assembly Ag nanoparticles for Raman enhancement via collecting backward and vertical direction scattering signals. Optics & Laser Technology 2023, 164, 109533.
    112. Kamal, S.; Yang, T. C.-K., Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. Journal of Colloid and Interface Science 2022, 605, 173-181.
    113. Charconnet, M.; Korsa, M. T.; Petersen, S.; Plou, J.; Hanske, C.; Adam, J.; Seifert, A., Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. Small Methods 2023, 7 (4), 2201546.
    114. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M., Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering. ACS Nano 2014, 8 (6), 5833-5842.
    115. Panikar, S. S.; Cialla-May, D.; Haaß, T.; Hübner, U.; Gonzalez, A. L.; Salas, P.; Popp, J., Large-scale assembly and pattern transfer of SERS-active nanoparticles for application in drug monitoring of methotrexate in blood serum. Vibrational Spectroscopy 2023, 124, 103470.
    116. Deriu, C.; Bracho, A.; McCord, B., Tailored Colloidal Nanostars for Surface-Enhanced Raman Spectroscopy: Optimization of Formulation Components and Study of the Stabilizer–Nanoparticle Interactions. The Journal of Physical Chemistry C 2022, 126 (4), 2023-2040.
    117. Zhu, Y.; Liu, W.; Liu, S.; Li, M.; Zhao, L.; Xu, L.; Wang, N.; Zhao, G.; Yu, Q., Preparation of AgNPs self-assembled solid-phase substrate via seed-mediated growth for rapid identification of different bacterial spores based on SERS. Food Research International 2022, 160, 111426.
    118. Höller, R. P. M.; Jahn, I. J.; Cialla-May, D.; Chanana, M.; Popp, J.; Fery, A.; Kuttner, C., Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. ACS Applied Materials & Interfaces 2020, 12 (51), 57302-57313.
    119. Abdul Hakkeem, H. M.; Babu, A.; Pillai, S. In High-Performance Au Nanorods as SERS Substrates for Environmental Monitoring Facilitated by the Organizing Power of Nanocellulose from Agave Palm Leaves, a Bio-Waste, Sustainable Energy-Water-Environment Nexus in Deserts, Cham, 2022//; Heggy, E.; Bermudez, V.; Vermeersch, M., Eds. Springer International Publishing: Cham, 2022; pp 649-656.
    120. Yılmaz, Ü. T.; Çalık, E.; Uzun, D.; Karipcin, F.; Yılmaz, H., Selective and sensitive determination of tannic acid using a 1-benzoyl-3-(pyrrolidine) thiourea film modified glassy carbon electrode. Journal of Electroanalytical Chemistry 2016, 776, 1-8.
    121. Mondal, A., Structural and magnetic properties of oxyquinolinate clusters of cobalt (II) and manganese (II) and serendipitous intake of carbonate during synthesis. Dalton Transactions 2015, 44.
    122. Ngai, K. S.; Tan, W.; Zainal, Z.; Mohd Zawawi, R.; Zidan, M., Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide. International journal of electrochemical science 2013, 8, 10557-10567.
    123. Tanaka, Y.; Naragino, H.; Yoshinaga, K.; Nakahara, A.; Kondo, T.; Fujishima, A.; Honda, K., Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films. International Journal of Electrochemistry 2012, 2012.
    124. Wang, J.; An, C.; Zhang, M.; Qin, C.; Ming, X.; Zhang, Q., ChemInform Abstract: Photochemical Conversion of AgCl Nanocubes to Hybrid AgCl-Ag Nanoparticles with High Activity and Long-Term Stability Towards Photocatalytic Degradation of Organic Dyes. Canadian Journal of Chemistry 2012, 90, 858-864.
    125. Han, C.; Ge, L.; Chen, C.; Li, Y.; Zhao, Z.; Xiao, X.; Li, Z.; Zhang, J., Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity. Journal of Materials Chemistry A 2014, 2 (31), 12594-12600.
    126. Alavi, M., Bacteria and fungi as major bio-sources to fabricate silver nanoparticles with antibacterial activities. Expert Review of Anti-infective Therapy 2022, 20 (6), 897-906.
    127. Li, Y.; Yang, D.; Li, P.; Li, Z., Lignin as a multi-functional agent for the synthesis of Ag nanoparticles and its application in antibacterial coatings. Journal of Materials Research and Technology 2022, 17, 3211-3220.
    128. Zhang, W.; Guo, D.; Li, Z.; Shen, L.; Li, R.; Zhang, M.; Jiao, Y.; Xu, Y.; Lin, H., A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Separation and Purification Technology 2022, 280, 119866.
    129. Ipe, D. S.; Kumar, P. T. S.; Love, R. M.; Hamlet, S. M., Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Frontiers in Microbiology 2020, 11.
    130. Alavi, M.; Kowalski, R.; Capasso, R.; Douglas Melo Coutinho, H.; Rose Alencar de Menezes, I., Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects 2022, 1 (1), 38-48.
    131. Alarcon, E. I.; Udekwu, K.; Skog, M.; Pacioni, N. L.; Stamplecoskie, K. G.; González-Béjar, M.; Polisetti, N.; Wickham, A.; Richter-Dahlfors, A.; Griffith, M.; Scaiano, J. C., The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 2012, 33 (19), 4947-4956.
    132. Ashok Kumar, D.; Palanichamy, V.; Roopan, S. M., Photocatalytic action of AgCl nanoparticles and its antibacterial activity. Journal of Photochemistry and Photobiology B: Biology 2014, 138, 302-306.
    133. Dong, Y.-Y.; Deng, F.; Zhao, J.-J.; He, J.; Ma, M.-G.; Xu, F.; Sun, R.-C., Environmentally friendly ultrosound synthesis and antibacterial activity of cellulose/Ag/AgCl hybrids. Carbohydrate Polymers 2014, 99, 166-172.
    134. Han, M.; Cheng, X.; Gao, Z.; Zhao, R.; Zhang, S., Inhibition of tumor cell growth by adenine is mediated by apoptosis induction and cell cycle S phase arrest. Oncotarget 2017, 8 (55), 94286-94296.
    135. Fan, F.; Zhang, L.; Zhou, X.; Mu, F.; Shi, G., A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging. Journal of Materials Chemistry B 2021, 9 (1), 170-175.
    136. Nishihara, T.; Kuno, S.; Nonaka, H.; Tabata, S.; Saito, N.; Fukuda, S.; Tomita, M.; Sando, S.; Soga, T., Beta-galactosidase-responsive synthetic biomarker for targeted tumor detection. Chemical Communications 2018, 54 (83), 11745-11748.
    137. Chen, Y.-C.; Hsu, J.-H.; Hsu, Y.-K., Branched silver nanowires on fluorine-doped tin oxide glass for simultaneous amperometric detection of H2O2 and of 4-aminothiophenol by SERS. Microchimica Acta 2018, 185 (2), 106.
    138. Amrolia, P.; Sullivan, S. G.; Stern, A.; Munday, R., Toxicity of aromatic thiols in the human red blood cell. Journal of Applied Toxicology 1989, 9 (2), 113-118.

    無法下載圖示 校內:2028-08-22公開
    校外:2028-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE