| 研究生: |
廖奕智 Liao, Yi-Chih |
|---|---|
| 論文名稱: |
具有高容量及開放結構之正極材料用於以鋅為基礎之儲能裝置 High-Capacity Open Framework Cathode for Zinc-Based Energy Storage Systems |
| 指導教授: |
柯碧蓮
Watchareeya Kaveevivitchai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 大規模儲能系統 、鋅離子電池 、普魯士藍相似物 、正極 、陰極 |
| 外文關鍵詞: | large-scale energy storage systems, zinc-ion batteries, Prussian blue analogue, zinc-ion cathode materials |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長久以來,可重複使用且可充電式之鋅離子電池的開發困難重重,特別是
在非水溶液電解質方面更是如此。本實驗著重於鋅離子電池的正極(陰極)材料開發,並以應用於大型儲能設備為首要標的。
本研究以普魯士藍相似物Na1.2Mn[Fe(CN)6]0.8 (NaMnFe-PB)作為鋅離子電池的陰極材料,在本研究中,感應耦合電漿、熱重分析儀及元素分析儀被用來測定樣品的化學式及其所含水重;X 光射線繞射儀及掃瞄、穿透電子顯微鏡則提供了樣品之形貌及結晶性之探討;充放電過程中晶格及過渡金屬氧化態之變化則透過非原位(ex-situ)之X 光射線繞射儀及X 光射線吸收光譜進行分析。
本實驗所用之鋅離子電池組成成分為:鋅金屬負極、Zn(CF3SO3)2 於 1:4 比例之propylene carbonate (PC)/dimethylsulfoxide (DMSO) 為電解液以及NaMnFe-PB 為正極材料,此電池之工作電壓約在1.45 伏特且於30 mA g-1 之電流密度下其放電電容量可達90 mAh g-1。此外,本電池即便在高如820 mA g-1(9 C)之電流密度下仍可得到良好的電容量(56 mAh g-1),更使得其更接近實際市場應用。
以地殼含量多且便宜的鋅金屬作為負極、容易合成且對環境友善的普魯士藍相似物作為正極,本研究提供了未來以鋅電池為方向之大型儲能系統之研究基礎且方向。
The development of rechargeable zinc-ion batteries with good electrochemical performance for non-aqueous systems is a great challenge. This work demonstrates an organic-based rechargeable zinc-ion battery using a Prussian blue analogue (PBA) sodium manganese hexacyanoferrate, Na1.2Mn[Fe(CN)6]0.8 (NaMnFe-PB), as the cathode material.
Inductively coupled plasma mass spectrometry, thermogravimetric analysis, and elemental analysis were used to determine the precise chemical formula and water content of the prepared sample. Powder X-ray diffraction, synchrotron X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to identify the compound, describe the morphology, and prove the crystallinity. The changes of unit cell and of
oxidation states of the transition metals, Mn and Fe, during charge/discharge were investigated by ex-situ PXRD and ex-situ synchrotron X-ray absorption near-edge structure.
Cells, composed of zinc metal anode, Zn(CF3SO3)2 in 1:4 propylene carbonate (PC)/dimethylsulfoxide (DMSO) electrolyte and NaMnFe-PB cathode, exhibited a discharge
plateau of ~1.45 V with a specific discharge capacity of about 90 mAh g-1 at 30 mA g-1. The cells also showed excellent rate capability with a satisfying 56 mAh g-1 discharge capacity at a high current density of 820 mA g-1 (9 C). The combination of an easily-synthesized and environmentally benign PBA cathode, with an affordable and non-toxic zinc anode provides new promising perspective to develop rechargeable zinc-ion batteries for applications in
large-scale energy storage systems.
1. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sust. Energy Rev. 2014, 39, 748.
2. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577.
3. Lee, K. T.; Jeong, S.; Cho, J. Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries. Acc. Chem. Res. 2013, 46, 1161.
4. Besenhard, J. O.; Winter, M. Advances in Battery Technology: Rechargeable Magnesium Batteries and Novel Negative-Electrode Materials for Lithium Ion Batteries. 2002, 3, 155.
5. Kundu, D.; Hosseini Vajargah, S.; Wan, L.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous Vs. Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. Energy Environ. Sci. 2018, 11, 881.
6. Gummow, R. J.; Vamvounis, G.; Kannan, M. B.; He, Y. Calcium-Ion Batteries: Current State-of-the-Art and Future Perspectives. Adv. Mater. 2018, 30, 1801702.
7. Wei, C.; Xu, C.; Li, B.; Du, H.; Kang, F. Preparation and Characterization of Manganese Dioxides with Nano-Sized Tunnel Structures for Zinc Ion Storage. J. Phys. Chem. Solids 2012, 73, 1487.
8. Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. Chem. Mater. 2015, 27, 3609.
9. Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nat. Commun. 2017, 8, 405.
10. Yuan, C.; Zhang, Y.; Pan, Y.; Liu, X.; Wang, G.; Cao, D. Investigation of the Intercalation of Polyvalent Cations (Mg2+, Zn2+) into λ-MnO2 for Rechargeable Aqueous Battery. Electrochim. Acta 2014, 116, 404.
11. Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Investigation of V2O5 as a Low-Cost Rechargeable Aqueous Zinc Ion Battery Cathode. Chem. Commun. 2018, 54, 4457.
12. Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angew. Chem. Int. Ed. 2018, 57, 3943.
13. Zavalij, P. Y.; Whittingham, M. S. Structural Chemistry of Vanadium Oxides with Open Frameworks. Acta Crystallogr., Sect. B: Struct. Sci. 1999, B55, 627.
14. Oka, Y.; Tamada, O.; Yao, T.; Yamamoto, N. Synthesis and Crystal Structure of σ-Zn0.25V2O5·H2O with a Novel Type of V2O5 Layer. J. Solid State Chem. 1996, 126, 65.
15. Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Adv. Mater. 2018, 30, 1705580.
16. Jia, Z.; Wang, B.; Wang, Y. Copper Hexacyanoferrate with a Well-Defined Open Framework as a Positive Electrode for Aqueous Zinc Ion Batteries. Mater. Chem. Phys. 2015, 149-150, 601.
17. Trocoli, R.; La Mantia, F. An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate. ChemSusChem 2015, 8, 481.
18. Lipson, A. L.; Han, S.-D.; Kim, S.; Pan, B.; Sa, N.; Liao, C.; Fister, T. T.; Burrell, A. K.; Vaughey, J. T.; Ingram, B. J. Nickel Hexacyanoferrate, a Versatile Intercalation Host for Divalent Ions from Nonaqueous Electrolytes. J. Power Sources 2016, 325, 646.
19. Chae, M. S.; Heo, J. W.; Kwak, H. H.; Lee, H.; Hong, S.-T. Organic Electrolyte-Based Rechargeable Zinc-Ion Batteries Using Potassium Nickel Hexacyanoferrate as a Cathode Material. J. Power Sources 2017, 337, 204.
20. Pramudita, J. C.; Schmid, S.; Godfrey, T.; Whittle, T.; Alam, M.; Hanley, T.; Brand, H. E. A.; Sharma, N. Sodium Uptake in Cell Construction and Subsequent in Operando Electrode Behaviour of Prussian Blue Analogues, Fe[Fe(CN)6]1-X·yH2O and FeCo(CN)6. Phys. Chem. Chem. Phys. 2014, 16, 24178.
21. Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O. Inorg. Chem. 1977, 16, 2704.
22. Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.; Cao, Y.; Ai, X.; Wang, J.; Yang, H. Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393.
23. Hu, M.; Ishihara, S.; Ariga, K.; Imura, M.; Yamauchi, Y. Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Self-Assembly to Periodic Arrangements. Chem. Eur. J. 2013, 19, 1882.
24. Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. J. Am. Chem. Soc. 2015, 137, 2658.
25. Uemura, T.; Kitagawa, S. Prussian Blue Nanoparticles Protected by Poly(Vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814.
26. Wu, X.; Deng, W.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. Single-Crystal FeFe(CN)6 Nanoparticles: A High Capacity and High Rate Cathode for Na-Ion Batteries. J. Mater. Chem. A 2013, 1, 10130.
27. Wang, R. Y.; Shyam, B.; Stone, K. H.; Weker, J. N.; Pasta, M.; Lee, H.-W.; Toney, M. F.; Cui, Y. Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials. Adv. Energy Mater. 2015, 5, 1401869.
28. Matsuda, T.; Takachi, M.; Moritomo, Y. Production of Sodium Manganese Ferrocyanide Thin Film for Sodium Ion Batteries. Chem. Commun. 2013, 49, 2750.
29. Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J. B. A Superior Low-Cost Cathode for a Na-Ion Battery. Angew. Chem. Int. Ed. 2013, 52, 1964.
30. Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent Advances in Zn-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564.
31. Yu, S. H.; Shokouhimehr, M.; Hyeon, T.; Sung, Y. E. Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries. ECS Electrochem. Lett. 2013, 2, A39.
32. You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G. High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries. Energy Environ. Sci. 2014, 7, 1643.
33. Liu, Y.; Qiao, Y.; Zhang, W.; Li, Z.; Ji, X.; Miao, L.; Yuan, L.; Hu, X.; Huang, Y. Sodium Storage in Na-Rich NaXFeFe(CN)¬6 Nanocubes. Nano Energy 2015, 12, 386.
34. Yang, Y.; Liu, E.; Yan, X.; Ma, C.; Wen, W.; Liao, X.-Z.; Ma, Z.-F. Influence of Structural Imperfection on Electrochemical Behavior of Prussian Blue Cathode Materials for Sodium Ion Batteries. J. Electrochem. Soc. 2016, 163, A2117.
35. Wang, L.; Song, J.; Qiao, R.; Wray, L. A.; Hossain, M. A.; Chuang, Y.-D.; Yang, W.; Lu, Y.; Evans, D.; Lee, J.-J.; Vail, S.; Zhao, X.; Nishijima, M.; Kakimoto, S.; Goodenough, J. B. Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 2548.
36. Lee, H.-W.; Wang, R. Y.; Pasta, M.; Woo Lee, S.; Liu, N.; Cui, Y. Manganese Hexacyanomanganate Open Framework as a High-Capacity Positive Electrode Material for Sodium-Ion Batteries. Nat. Commun. 2014, 5, 5280.
37. Kumar, G. G.; Sampath, S. Electrochemical Characterization of Poly(Vinylidenefluoride)-Zinc Triflate Gel Polymer Electrolyte and Its Application in Solid-State Zinc Batteries. Solid State Ion. 2003, 160, 289.
38. Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. Chem. Mater. 2015, 27, 3609.
39. Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. Reversible Insertion Properties of Zinc Ion into Manganese Dioxide and Its Application for Energy Storage. Electrochem. Solid State Lett. 2009, 12.A61.
40. Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Electrochemically-Induced Reversible Transition from the Tunneled to Layered Polymorphs of Manganese Dioxide. Sci. Rep. 2014, 4, 6066.
41. Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Elucidating the Intercalation Mechanism of Zinc Ions into α-MnO2 for Rechargeable Zinc Batteries. Chem. Commun. 2015, 51, 9265.
42. Deng, L.; Zhang, G.; Kang, L.; Lei, Z.; Liu, C.; Liu, Z.-H. Graphene/VO2 Hybrid Material for High Performance Electrochemical Capacitor. Electrochim. Acta 2013, 112, 448.
43. Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A Layered δ-MnO2 Nanoflake Cathode with High Zinc-Storage Capacities for Eco-Friendly Battery Applications. Electrochem. commun. 2015, 60, 121.
44. Han, S.-D.; Kim, S.; Li, D.; Petkov, V.; Yoo, H. D.; Phillips, P. J.; Wang, H.; Kim, J. J.; More, K. L.; Key, B.; Klie, R. F.; Cabana, J.; Stamenkovic, V. R.; Fister, T. T.; Markovic, N. M.; Burrell, A. K.; Tepavcevic, S.; Vaughey, J. T. Mechanism of Zn Insertion into Nanostructured α-MnO2: A Nonaqueous Rechargeable Zn Metal Battery. Chem. Mater. 2017, 29, 4874.
45. Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 933.
46. Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894.
47. Hao, J.; Mou, J.; Zhang, J.; Dong, L.; Liu, W.; Xu, C.; Kang, F. Electrochemically Induced Spinel-Layered Phase Transition of Mn3O4 in High Performance Neutral Aqueous Rechargeable Zinc Battery. Electrochim. Acta 2018, 259, 170.
48. Le, D. B.; Passerini, S.; Coustier, F.; Guo, J.; Soderstrom, T.; Owens, B. B.; Smyrl, W. H. Intercalation of Polyvalent Cations into V2O5 Aerogels. Chem. Mater. 1998, 10, 682.
49. Senguttuvan, P.; Han, S.-D.; Kim, S.; Lipson, A. L.; Tepavcevic, S.; Fister, T. T.; Bloom, I. D.; Burrell, A. K.; Johnson, C. S. A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery. Adv. Energy Mater. 2016, 6, 1600826.
50. Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; Mueller, K. T.; Mai, L.; Liu, J.; Yang, J. Water-Lubricated Intercalation in V¬2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2018, 30, 1703725.
51. Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; Lee, K.-S.; Sun, Y.-K.; Kim, J. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem. Mater. 2017, 29, 1684.
52. He, P.; Quan, Y.; Xu, X.; Yan, M.; Yang, W.; An, Q.; He, L.; Mai, L. High-Performance Aqueous Zinc–Ion Battery Based on Layered H2V3O8 Nanowire Cathode. Small 2017, 13, 1702551.
53. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5.
54. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery. Sci. Rep. 2015, 5, 18263.
55. Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid–Water Mixture as Electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158.
56. Liu, Z.; Bertram, P.; Endres, F. Bio-Degradable Zinc-Ion Battery Based on a Prussian Blue Analogue Cathode and a Bio-Ionic Liquid-Based Electrolyte. J Solid State Electrochem. 2017, 21, 2021.
57. Martínez-García, R.; Reguera, E.; Rodriguez, J.; Balmaseda, J.; Roque, J. Crystal Structures of Some Manganese (II) and Cadmium Hexacyanoferrates (II,III) and Structural Transformations Related to the Sorption of Cesium. Powder Diffr. 2004, 19, 255.
58. Parthasarathi, N. L.; Duraiselvam, M. Improvement of High Temperature Wear Resistance of AISI 316 ASS through NiCrBSiCFe Plasma Spray Coating. JMMCE 2010, 9, 653.
59. Johra, F. T.; Lee, J.-W.; Jung, W.-G. Facile and Safe Graphene Preparation on Solution Based Platform. J. Ind. Eng. Chem. 2014, 20, 2883.
60. Pan, C.-J.; Yuan, C.; Zhu, G.; Zhang, Q.; Huang, C.-J.; Lin, M.-C.; Angell, M.; Hwang, B.-J.; Kaghazchi, P.; Dai, H. An Operando X-Ray Diffraction Study of Chloroaluminate Anion-Graphite Intercalation in Aluminum Batteries. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 5670.
61. Wang, S.; Wang, C.; Ji, X. Towards Understanding the Salt-Intercalation Exfoliation of Graphite into Graphene. RSC Adv. 2017, 7, 52252.
62. Wilke, M.; Farges, F. o.; Petit, P.-E.; Brown, G. E., Jr.; Martin, F. O. Oxidation State and Coordination of Fe in Minerals: An Fe K-Xanes Spectroscopic Study. Am. Mineral. 2001, 86, 714.
63. Chalmin, E.; Farges, F.; Brown, G. E., Jr. Petrology A Pre-Edge Analysis of Mn K-Edge Xanes Spectra to Help Determine the Speciation of Manganese in Minerals and Glasses. Contributions Mineral. Petrol. 2009, 157, 111.