| 研究生: |
張綱凡 Chang, Kang-Fan |
|---|---|
| 論文名稱: |
內毒素前置處理對新生鼠腦缺氧缺血的神經保護之研究 LPS preconditioning mediates neuroprotection against hypoxic-ischemic injury in the neonatal rat brain |
| 指導教授: |
黃朝慶
Huang, Chao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 內毒素 、新生兒缺氧窒息 、前置處理 |
| 外文關鍵詞: | LPS, Hypoxic-ischemic brain injury, preconditioning |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新生兒窒息腦病變是指出生前後因缺氧而引起的腦部損傷。這種傷害是造成嬰幼兒神經病變最常見的原因,其後遺症包括智力障礙、腦性麻痺、抽痙或是學習障礙。目前對此種窒息腦傷並無有效的治療方式。除了研發有效的治療方式之外,科學家也致力於一些“前置處理”(preconditioning)方面的研究。前置處理就是在一個致命的傷害之前事先給予一個非致命性的刺激,進而保護生物體對抗致命的傷害,使所受的傷害減少。這方面的研究可以提供一些可能的機制來預防及治療新生兒窒息腦傷。
我們的動物模式是將出生後七天的幼鼠在遭遇缺血缺氧傷害前24小時以腹腔注射給予一個低劑量的革蘭氏陰性菌細胞壁上的脂多醣體(Lipopolysaccharide,LPS),並在其行為及病理上發現了明顯的神經保護效果。進一步研究其潛在機制後,發現LPS前處理可以在缺血缺氧傷害後減少活化態的Caspase-3,Caspase-9,被裂解的poly (ADP-ribose) polymerase (PARP),自由基(Reactive oxygen species,ROS)的表現量,並且增加c-Inhibitor of apoptosis protein (cIAP)的表現量。在前置處理的早期機制方面我們發現TLR4扮演著重要的的角色;相較之下,Mitogen-activated protein kinases (MAPK)和ROS似乎就不是那麼的重要。
總而言之,在這份研究中我們先在新生鼠腦中建立了一個LPS前置處理的動物模式,並證實由LPS前置處理所達到的腦部保護作用機制包括減少ROS的產量及細胞的自我凋零(Apoptosis),並增加抗自我凋零(anti-apoptosis)的蛋白質cIAP的表現量進而達到神經保護的作用;至於前置處理的早期的機制還有待釐清。我們的研究可以對新生兒窒息腦傷的治療方式提供一些可能的研究方向。
Perinatal hypoxic-ischemic (HI) brain injury is a major cause of neonatal mortality and long-term disability such as mental retardation, cerebral palsy, learning disability, and seizures. There are still no effective therapies against neonatal HI brain injury to date. A sublethal stress before a lethal injury can reduce the neuronal death, a phenomenon called “preconditioning”. Elucidating the underlying mechanisms of preconditioning may provide potential neuroprotective therapy for neonatal HI encephalopathy.
We first established a lipopolysaccharide (LPS) preconditioning model in neonatal rats by pretreating rat pups with a low dose of LPS 24 hours before HI injury on postnatal day 7. We found that the degree of brain injury of LPS-preconditioned rats were significantly less than that of NS-pretreated rats. The behavioral performance measured by Morris water maze of LPS-preconditioned rats was also significantly better than that of NS-pretreated rats. The expression levels of apoptosis markers, such as cleavaged form of caspase-3, caspase-9, poly (ADP-ribose) polymerase (PARP), and the production of reactive oxygen species (ROS) in the cortex were significantly lower in the LPS-preconditioned rats compared to NS-pretreated rats at 24 hours after HI injury.
Among the mitogen-activated protein kinases (MAPK) family, LPS preconditioning could increase the phosphorylation levels of extracellular signal-related kinase (ERK) instead of p38. However, inhibition of MAP kinase kinase (MEK) or p38 did not affect the neuroprotection induced by LPS preconditioning. We also observed that LPS could up-regulate ROS production up to 24 hours after LPS injection. However, ROS scavenger, N-(2-mercaptopropionyl) glycine (N-2-MPG), could not abolish the LPS induced neuroprotection. In contrast, toll-like receptor 4 (TLR4) was involved in the LPS-induced neuroprotection since LPS preconditioning could not be induced in the C3H/HeJ mice, a TLR4 deficient mice.
In conclusion, we established a LPS preconditioning model in immature rat brains, and the neuroprotection mechanisms in this model involved the down-regulation of ROS production and the reduction of apoptosis. The LPS-preconditioning mechanisms in the neonatal rat brain remain to be elucidated.
References
1. Ahmed SH, He YY, Nassief A, Xu J, Xu XM, Hsu CY. (2000) Effects of lipopolysaccharide priming on acute ischemic brain injury. Stroke 31:193-9.
2. Angele M. K, Schwacha M G, Smail N, Catania R A, Ayala A, Cioffo W G, Chaudry I H (1999) Hypoxemia in the absence of blood loss upregulates iNOS expression and activity in macrophages. Am J Physiol. 276(2 Pt 1):C285-90.
3. An H, Yu Y, Zhang M, Xu H, Qi R, Yan X, Liu S, Wang W, Guo Z, Guo J, Qin Z, Cao X. (2002) Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology. 106(1):38-45.
4. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. (2004) Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF- kappaB. J Immunol. 15;172(4):2522-9.
5. Bordet R, Deplanque D, Maboudou P, Puisieux F, Pu Q, Robin E, Martin A, Bastide M, Leys D, Lhermitte M, Dupuis B. (2000) Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide- induced brain ischemic tolerance. J Cereb Blood Flow Metab. 20(8):1190-6.
6. Brucklacher RM, Vannucci RC, Vannucci SJ (2002) Hypoxic preconditioning increases brain glycogen and delays energy depletion from hypoxia- ischemia in the immature Rat. Dev Neurosci 24:411-417
7. Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM. (1998) Caspase inhibitor affords neuroprotection with delayed administration in the rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992-9.
8. Coumans AB, Middelanis JS, Garnier Y, Vaihinger HM, Leib SL, Von Duering MU, Hasaart TH, Jensen A, Berger R. (2003) Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res. 53(5):770-5.
9. Couturier JY, Ding-Zhou L, Croci N, Plotkine M, Margaill I. (2003) 3-Aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Exp Neurol. 24(2):973-80.
10. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabro G, Cucinotta G, De Sarro A, Caputi AP. (2000) Beneficial effects of n-acetylcysteine in ischaemic brain injury. Br J Pharmacol. 130(6):1219-26.
11. Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Baltzer IM, Hagberg H. (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci 13: 1101–1106.
12. Gidday JM, Fitzgibbons JC, Shah AR (1995) Reduction in cerebral ischemic injury in newborn rat by potentiation of endogenous adenosine. Pediatr Res 38:306-311.
13. Gong KZ, Zhang ZG, Li AH, Huang YF, Bu P, Dong F, Liu J.(2004) ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes. Chin Med J (Engl). 117(3):395-400.
14. Gu Z, Jiang Q, Zhang G.. (2001) Extracellular signal-related kinase and c-Jun N-terminal protein kinase in ischemic tolerance. Neurochem 12(16):3487-91.
14. Han BH, Holtzman DM. (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775-5781.
15. Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW. (2003) Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke. 34(4):1015-20.
17. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J. (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res. 41(5):607-16.
18. Johnston MV, Trescher WH, Ishida A, Nakajima W. (2001) Neurobiology of hypoxic- ischemic injury in the developing brain. Pediatr Res.49(6):735-41.
19. Krams M, Lees KR, Hacke W, Grieve AP, Orgogozo JM, Ford GA; ASTIN Study Investigators.(2003) Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose-response study of UK-279,276 in acute ischemic stroke. Stroke. 34(11):2543-8.
20. Kyosseva SV. (2004) Mitogen-activated protein kinase signaling. Int Rev Neurobiol. 59:201-20. Review.
21. Lee SJ, Lee S. (2002) Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy. 1(2):181-91.
22. Liu D, Lu C, Wan R, Auyeung WW, Mattson MP. (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. Cereb Blood Flow Metab. 22(4):431-43.
23. Liu S, Gallo DJ, Green AM, Williams DL, Gong X, Shapiro RA, Gambotto AA, Humphris EL, Vodovotz Y, Billiar TR. (2002) Role of toll-like receptors in changes in gene expression and NF-kappa B activation in mouse hepatocytes stimulated with lipopolysaccharide. Infect Immun. 70(7):3433-42.
24. Nakai Y, Horimoto H, Mieno S, Sasaki S. (2001) Mitochondrial ATP-sensitive potassium channel plays a dominant role in ischemic preconditioning of rabbit heart. Eur Surg Res. 33(2):57-63.
25. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. (1992) Oxygen radicals in cerebral ischemia. Am J Physiol. 263(5 Pt 2): H1356-62.
26. Otani H. (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal. 6(2):449-69.
27. Palmer C, Roberts RL, Young PI. (2004) Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury. Pediatr Res. 55(4):549-56.
28. Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U. (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 18(2):196-205.
29. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 11;282(5396):2085-8.
30. Rajapakse N, Shimizu K, Kis B, Snipes J, Lacza Z, Busija D. (2002) Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats. Neurosci Lett. 26;327(3):208-12.
31. Ryan KA, Smith MF Jr, Sanders MK, Ernst PB. (2004) Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun 72(4):2123-30.
32. Saliba E, Henrot A. (2001) Inflammatory mediators and neonatal brain damage.Biol Neonate. 79(3-4):224-7.
33. Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK. (2003) N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2;971(1):1-8.
34. Shamloo M, Rytter A, Wieloch T. (1999) Activation of the extracellular signal-related protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience 93(1):81-88
35. Sheldon RA, Sedik C, Ferriero DM. (1998) Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res. 9;810(1-2):114-22.
36. Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, Bennett MV, Zukin RS. (2004) Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci. 17;24(11):2750-9.
37. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. (1997) Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 748:267-270.
38. Tasaki K. (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283-1296.
39. Vannucci RC. (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 27(4 Pt 1):317-26.
40. Vannicci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, Vannucci SJ. (1999) Rat model of perinatal hypoxic-ischemic brain damage.J Neurosci Res. 15;55(2):158-63.
41. Wada T, Penninger JM. (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 12;23(16):2838-49.
42. Wang X, Karlsson JO, Zhu C, Bahr BA, Hagberg H, Blomgren K. (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia. Biol Neonate. 79(3-4):172-9.
43. West MA, Heagy W. (2002) Endotoxin tolerance: a review. Crit Care Med. 30(1 Suppl):S64-73.
44. Xanthou M, Fotopoulos S, Mouchtouri A, Lipsou N, Zika I, Sarafidou J (2002) Inflammatory mediators in perinatal asphyxia and infection. Acta Padiatr Suppl 438:92-7
45. Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K, Kawasaki T. (1983) A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of alpha-tocopherol administration. Stroke. 14(6):977-82.
46. Yang L, Sameshima H, Ikeda T, Ikenoue T. (2004) Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res. 30(2):142-7.