| 研究生: |
薛筱瑾 Hsueh, Hsiao-Chin |
|---|---|
| 論文名稱: |
一、利用新穎三氮烯結構對胺類官能基的保護及去保護方法之研究
二、探討官能基的修飾對氮轉移試劑的穩定性及化學反應性之影響 1.Development of Novel Triazenes for Amine Protection and Deprotection 2.Investigation into the Stability and Reactivity of Functionalized N-Transfer Reagents |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 氮轉移試劑 、重氮鹽 、重氮化合物 、三氮烯 、胺類保護基 |
| 外文關鍵詞: | N-transfer reagent, Diazonium Salt, Diazo compound, Triazene, Amine protecting group |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室已設計出一種新穎的第一代氮轉移試劑(N-transfer reagent),可藉由此試劑的親電性下,與-胺基酯、-胺基醯胺等各樣的伯胺(primary amine)形成三氮烯中間體(triazene intermediate),再進一步於溫和的弱鹼環境下扣六環的驅動力降解成其所相對應的重氮化合物與內醯胺環化合物,同時表現出相當穩定的產率。
在結果與討論的第一部份,是針對氮轉移試劑形成的三氮烯中間體去做探討,因三氮烯化合物也能作為胺類保護基存在並可由三氟醋酸或氫氧化鉀搭配鎳鋁合金的方式去保護。因此,我們以此氮轉移反應的分子內環化作為驅動力,預期氮轉移試劑所生成的三氮烯中間體也能試著作為胺類保護基使用,並在無金屬的情況下由酸/鹼溶液或氟離子等簡易的試劑活化三氮烯並在original form下進行反向的分子內環化去保護基的反應機制。為此首先我們需要將重氮鹽試劑側鏈上的4-氟苯酚基團改為陰離子基團,在形成三氮烯時透過此陰離子使反應機制走逆闔環路徑,而此陰離子基團則是透過矽-氟鍵以及水解反應生成。在合成中,我們嘗試了關五環以及關六環的結構、不同的保護基,還有嘗試不一樣的重氮化條件來得到三氮烯保護基,試著找到合適的三氮烯結構。雖然於某些例子中順利得到了三氮烯保護基,可惜最後仍因為三氮烯的互變異構化使結構傾向azo-transfer form,而無法達成目的。
在結果與討論的第二部份,主要是為了改善第一代氮轉移試劑本身穩定性的不足,同時降低還原副產物的生成並維持或提升該試劑原有的反應性為目標。因此,我們在第一代氮轉移試劑的苯環上引入不同的推/拉電子官能基,並以第一代氮轉移試劑的結構作為模板,奠定了第二代氮轉移試劑的製造方式;在我們得到了一系列第二代氮轉移試劑後,再透過實驗以及儀器(核磁共振儀、熱重分析儀等)追蹤並觀察,以數據結果直接比較引入官能基以後的差異性。最後,在新一代的氮轉移試劑中,其不只物性上有大幅改善,在化性方面也有出色的表現,整體來說是一個不錯的結果。
In our laboratory, we have designed a novel N-transfer reagent, and it would reacts with α-amino ester and amide to form triazene intermediate then further degrades to its corresponding diazo and lactam via the intra-molecular lactamization.
In the first part, we focused on the triazene. We expected the triazene generated from N-transfer reagent would be a protecting group of amine and undergo deprotection by simple reagent. To achieve this goal, we changed the 4-fluorophenol on diazonium salt into a functional group that could generate an anion group at first, and this anion was generated by cleavage of the Si-F bond or hydrolysis reaction. In order to afford this anion, we adjusted from the structure of diazonium salt, the functional groups on the side chain and the reaction conditions one by one. Try to activate the anion group through the basic solution or F- reagent and make the triazene have the driving force to conduct the de-protection.
In the second part, improving the drawbacks of instability and side product of N-transfer reagent were our goals. Therefore, we introduced a variety of electron-donating/withdrawing functional groups on the benzene ring of N-transfer reagent to obtain a series of the second-generation N-transfer reagents. Then, we examined the improvement of the properties via experiments and instruments and compared the differences after the introduction of the functional groups. Finally, not only the stability have great improvement, but also the reactivity have excellent performance in the second-generation N-transfer reagents. Overall, it presented a good result for us.
[1]. Cliffe, W. H., The Life and Times of Peter Griess. Journal of the Society of Dyers and Colourists 1959, 75 (6), 278-285.
[2]. Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M., Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chemical Reviews 2006, 106 (11), 4622-4643.
[3]. Bräse, S.; Köbberling, J.; Enders, D.; Lazny, R.; Wang, M.; Brandtner, S., Triazenes as robust and simple linkers for amines in solid-phase organic synthesis. Tetrahedron Letters 1999, 40 (11), 2105-2108.
[4]. Dahmen, S.; Bräse, S., The First Stable Diazonium Ion on Solid Support—Investigations on Stability and Usage as Linker and Scavenger in Solid-Phase Organic Synthesis. Angewandte Chemie International Edition 2000, 39 (20), 3681-3683.
[5]. Bräse, S.; Dahmen, S.; Popescu, C.; Schroen, M.; Wortmann, F.-J., The Structural Influence in the Stability of Polymer-Bound Diazonium Salts. Chemistry – A European Journal 2004, 10 (21), 5285-5296.
[6]. Magers, D. H.; Salter, E. A.; Bartlett, R. J.; Salter, C.; Hess, B. A.; Schaad, L. J., Do stable isomers of N3H3 exist? Journal of the American Chemical Society 1988, 110 (11), 3435-3446.
[7]. Kimball, D. B.; Haley, M. M., Triazenes: A Versatile Tool in Organic Synthesis. Angewandte Chemie International Edition 2002, 41 (18), 3338-3351.
[8]. Connors, T. A.; Goddard, P. M.; Merai, K.; Ross, W. C. J.; Wilman, D. E. V., Tumour inhibitory triazenes: Structural requirements for an active metabolite. Biochemical Pharmacology 1976, 25 (3), 241-246.
[9]. Gescher, A.; Hickman, J. A.; Simmonds, R. J.; Stevens, M. F. G.; Vaughan, K., Studies of the mode of action of antitumour triazenes and triazines—II. Investigation of the selective toxicity of 1-aryl-3,3-dimethyltriazenes. Biochemical Pharmacology 1981, 30 (1), 89-93.
[10]. Jean-Claude, B.; Mustafa, A.; Damian, Z.; De Marte, J.; Vasilescu, D.; Yen, R.; Chan, T.; Leyland-Jones, B., Cytokinetics of a novel 1,2,3-triazene-containing heterocycle, 8-nitro-3-methyl-benzo-1,2,3,5-tetrazepin-4(3H)-one (NIME), in the human epithelial ovarian cancer cell line OVCAR-3. Biochemical Pharmacology 1999, 57 (7), 753-762.
[11]. Gross, M. L.; Blank, D. H.; Welch, W. M., The triazene moiety as a protecting group for aromatic amines. The Journal of Organic Chemistry 1993, 58 (8), 2104-2109.
[12]. P. J. Stang, F. D., Modern Acetylene Chemistry 1995.
[13]. Sonogashira, K.; Tohda, Y.; Hagihara, N., A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Letters 1975, 16 (50), 4467-4470.
[14]. Moore, J. S.; Weinstein, E. J.; Wu, Z., A convenient masking group for aryl iodides. Tetrahedron Letters 1991, 32 (22), 2465-2466.
[15]. Griefs, P., Vorläufige Notiz über die Einwirkung von salpetriger Säure auf Amidinitro‐und Aminitrophenylsäure. Justus Liebigs Annalen der Chemie 1858, 106 (1), 123-125.
[16]. Clark, L., Diazodinitrophenol, a detonating explosive. Industrial & Engineering Chemistry 1933, 25 (6), 663-669.
[17]. Di, M.; Rein, K. S., Aza analogs of kainoids by dipolar cycloaddition. Tetrahedron letters 2004, 45 (24), 4703-4705.
[18]. Curtius, T., Ueber die Einwirkung von salpetriger Säure auf salzsauren Glycocolläther. Berichte der deutschen chemischen Gesellschaft 1883, 16 (2), 2230-2231.
[19]. Davies, H. M.; Morton, D., Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chemical Society Reviews 2011, 40 (4), 1857-1869.
[20]. Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B., Stereoselective cyclopropanation reactions. Chemical Reviews 2003, 103 (4), 977-1050.
[21]. Lewis, D. E., Disability, Despotism, Deoxygenation—From Exile to Academy Member: Nikolai Matveevich Kizhner. Angewandte Chemie International Edition 2013, 52 (45), 11704-11712.
[22]. Maas, G., New syntheses of diazo compounds. Angewandte Chemie International Edition 2009, 48 (44), 8186-8195.
[23]. Anciaux, A.; Demonceau, A.; Noels, A.; Hubert, A. J.; Warin, R.; Teyssie, P., Transition-metal-catalyzed reactions of diazo compounds. 2. Addition to aromatic molecules: catalysis of Buchner's synthesis of cycloheptatrienes. The Journal of Organic Chemistry 1981, 46 (5), 873-876.
[24]. Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A., Modern organic synthesis with α-diazocarbonyl compounds. Chemical reviews 2015, 115 (18), 9981-10080.
[25]. Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J., Trifluoromethylthiolation and Trifluoromethylselenolation of α‐Diazo Esters Catalyzed by Copper. Chemistry–A European Journal 2016, 22 (35), 12270-12273.
[26]. Holton, T. L.; Schechter, H., Advantageous syntheses of diazo compounds by oxidation of hydrazones with lead tetraacetate in basic environments. The Journal of Organic Chemistry 1995, 60 (15), 4725-4729.
[27]. Regitz, M., New methods of preparative organic chemistry. Transfer of diazo groups. Angewandte Chemie International Edition in English 1967, 6 (9), 733-749.
[28]. Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Organic letters 2007, 9 (19), 3797-3800.
[29]. Zhang, J.; Chen, W.; Huang, D.; Zeng, X.; Wang, X.; Hu, Y., Tandem Synthesis of α-Diazoketones from 1, 3-Diketones. The Journal of Organic Chemistry 2017, 82 (17), 9171-9174.
[30]. García Ruano, J. L.; Peromingo, M. T.; Alonso, M.; Fraile, A.; Martín, M. R.; Tito, A., 1, 3-dipolar cycloadditions of diazoalkanes to activated sulfoxides: Influence of lewis acids. The Journal of organic chemistry 2005, 70 (22), 8942-8947.
[31]. Myers, E. L.; Raines, R. T., A Phosphine‐Mediated Conversion of Azides into Diazo Compounds. Angewandte Chemie International Edition 2009, 48 (13), 2359-2363.
[32]. Chou, H.-H.; Raines, R. T., Conversion of azides into diazo compounds in water. Journal of the American Chemical Society 2013, 135 (40), 14936-14939.
[33]. Davies, J. S.; Higginbotham, C. L.; Tremeer, E. J.; Brown, C.; Treadgold, R. C., Protection of hydroxy groups by silylation: use in peptide synthesis and as lipophilicity modifiers for peptides. Journal of the Chemical Society, Perkin Transactions 1 1992, (22), 3043-3048.
[34]. Ikawa, T.; Hattori, K.; Sajiki, H.; Hirota, K., Solvent-modulated Pd/C-catalyzed deprotection of silyl ethers and chemoselective hydrogenation. Tetrahedron 2004, 60 (32), 6901-6911.
[35]. Little, R. D., Protective Groups in Organic Synthesis, 3rd Edition Theodora W. Green (The Rowland Institute for Science) and Peter G. M. Wuts (Pharmacia and Upjohn Company). John Wiley & Sons, Inc., New York, NY. 1999. xxi + 779 pp. 15.5 × 23 cm. $84.95. ISBN 0-471-16019-9. Journal of Natural Products 1999, 62 (9), 1349-1349.
[36]. Chuprun, S.; Dar’in, D.; Kantin, G.; Krasavin, M., [3+2]-Cycloaddition of α-Diazocarbonyl Compounds with Arenediazonium Salts Catalyzed by Silver Nitrate Delivers 2,5-Disubstituted Tetrazoles. Synthesis 2019, 51 (21), 3998-4005.
[37]. Filimonov, V. D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E. A.; Lee, Y. M.; Hwang, H. Y.; Kim, H.; Chi, K.-W., Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: Their Preparation, Structures, and Synthetic Applicability. Organic Letters 2008, 10 (18), 3961-3964.
[38]. Tang, Z. Y.; Zhang, Y.; Wang, T.; Wang, W., Rhodium(I)-Catalyzed Synthesis of Aryltriethoxysilanes from Arenediazonium Tosylate Salts with Triethoxysilane. Synlett 2010, 2010 (05), 804-808.
[39]. Camp, D.; Jenkins, I. D., The mechanism of the Mitsunobu esterification reaction. Part I. The involvement of phosphoranes and oxyphosphonium salts. The Journal of Organic Chemistry 1989, 54 (13), 3045-3049.
[40]. Grochowski, E.; Hilton, B. D.; Kupper, R. J.; Michejda, C. J., Mechanism of the triphenylphosphine and diethyl azodicarboxylate induced dehydration reactions (Mitsunobu reaction). The central role of pentavalent phosphorus intermediates. Journal of the American Chemical Society 1982, 104 (24), 6876-6877.
[41]. Oyo, M.; Masaaki, Y., Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. Bulletin of the Chemical Society of Japan 1967, 40 (10), 2380-2382.
[42]. Bondarev, A. A.; Naumov, E. V.; Kassanova, A. Z.; Krasnokutskaya, E. A.; Stankevich, K. S.; Filimonov, V. D., First Study of the Thermal and Storage Stability of Arenediazonium Triflates Comparing to 4-Nitrobenzenediazonium Tosylate and Tetrafluoroborate by Calorimetric Methods. Organic Process Research & Development 2019, 23 (11), 2405-2415.
[43]. Hersey, R. Stabilisation of diazo compounds used in lithographic systems. Sheffield Hallam University, 1991.
[44]. Mo, F.; Dong, G.; Zhang, Y.; Wang, J., Recent applications of arene diazonium salts in organic synthesis. Organic & biomolecular chemistry 2013, 11 (10), 1582-1593.
[45]. Ullrich, R.; Grewer, T., Decomposition of aromatic diazonium compounds. Thermochimica Acta 1993, 225 (2), 201-211.
[46]. Bräse, S.; Dahmen, S.; Popescu, C.; Schroen, M.; Wortmann, F. J., The Structural Influence in the Stability of Polymer‐Bound Diazonium Salts. Chemistry–A European Journal 2004, 10 (21), 5285-5296.
[47]. Dahmen, S.; Bräse, S., The First Stable Diazonium Ion on Solid Support—Investigations on Stability and Usage as Linker and Scavenger in Solid‐Phase Organic Synthesis. Angewandte Chemie International Edition 2000, 39 (20), 3681-3683.
[48]. Elofson, R. M.; Gadallah, F., Substituent effects in the polarography of aromatic diazonium salts. The Journal of Organic Chemistry 1969, 34 (4), 854-857.
[49]. Whetsel, K. B.; Hawkins, G.; Johnson, F., The infrared spectra of aryldiazonium salts. Journal of the American Chemical Society 1956, 78 (14), 3360-3363.
[50]. Tóth, G.; Kövér, K. E., Simple, Safe, Large Scale Synthesis of 5-Arylmethyl-2,2-dimethyl-1,3-dioxane-4,6-diones and 3-Arylpropanoic Acids. Synthetic Communications 1995, 25 (19), 3067-3074.
[51]. Mudhar, H.; Witty, A., One-pot conversion of alkyl aldehydes into substituted propanoic acids via Knoevenagel condensation with Meldrum’s acid. Tetrahedron Letters 2010, 51 (38), 4972-4974.
[52]. Payne, D. T.; Zhao, Y.; Fossey, J. S., Ethylenation of aldehydes to 3-propanal, propanol and propanoic acid derivatives. Sci Rep 2017, 7 (1), 1720-1720.
[53]. Pflästerer, D.; Rettenmeier, E.; Schneider, S.; de Las Heras Ruiz, E.; Rudolph, M.; Hashmi, A. S. K., Highly Efficient Gold-Catalyzed Synthesis of Dibenzocycloheptatrienes. Chemistry – A European Journal 2014, 20 (22), 6752-6755.
[54]. Whyte, A.; Olson, M. E.; Lautens, M., Palladium-Catalyzed, Norbornene-Mediated, ortho-Amination ipso-Amidation: Sequential C–N Bond Formation. Organic Letters 2018, 20 (2), 345-348.
[55]. Kostas, I. D.; Andreadaki, F. J.; Kovala-Demertzi, D.; Christos, P.; Demertzis, M. A., Suzuki–Miyaura cross-coupling reaction of aryl bromides and chlorides with phenylboronic acid under aerobic conditions catalyzed by palladium complexes with thiosemicarbazone ligands. Tetrahedron Letters 2005, 46 (12), 1967-1970.
[56]. C., S., Introduction to Chemical Biology.
[57]. Ahern, T. P.; Fong, H.; Vaughan, K., Open-chain nitrogen compounds. Part II. Preparation, characterization, and degradation of 1 (3)-Aryl-3 (1)-methyltriazenes; the effect of substituents on the reaction of diazonium salts with methylamine. Canadian Journal of Chemistry 1977, 55 (10), 1701-1709.
[58]. Vaughan, K., The effect of electron-withdrawing substituents on the tautomerism between 1-aryl-3-methyltriazenes and 3-aryl-1-methyltriazenes. Journal of the Chemical Society, Perkin Transactions 2 1977, (1), 17-20.
[59]. Fisher, T.; Meierhoefer, A., Substituent effects in free-radical reactions. A study of 4-substituted 3-cyanobenzyl free radicals. The Journal of Organic Chemistry 1978, 43 (2), 224-228.
[60]. Mathur, N. C.; Snow, M. S.; Young, K. M.; Pincock, J. A., Substituent effects on the rate of carbene formation by the pyrolysis of rigid aryl substituted diazomethanes. Tetrahedron 1985, 41 (8), 1509-1516.
[61]. Nau, W. M.; Harrer, H. M.; Adam, W., Radical stabilization and ground state polar substituent effects in the thermal decomposition of azoalkanes. Journal of the American Chemical Society 1994, 116 (24), 10972-10982.
[62]. Xiong, X.-D.; Chen, W.-X.; Kuang, Y.-Y.; Chen, F.-E., A Novel and Practical Synthesis of 2-Amino-5-hydroxypropiophenone. Organic Preparations and Procedures International 2009, 41 (5), 423-427.
[63]. Seyed Mohammad, S.; Hamid, S.; Zahra, A., NEW PROCEDURE FOR THE TOTAL SYNTHESIS OF CILOSTAMIDE. Heterocyclic Communications 2008, 14 (3), 183-186.
[64]. Costero, A. M.; Parra, M.; Gil, S.; Gotor, R.; Mancini, P. M. E.; Martínez-Máñez, R.; Sancenón, F.; Royo, S., Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push–Pull Dyes. Chemistry – An Asian Journal 2010, 5 (7), 1573-1585.
[65]. ZRIHEN, M.; LABIA, R.; WAKSELMAN, M., SUBSTITUTED N‐ARYLAZETIDINONES, POTENTIAL INHIBITORS OF β‐LACTAMASE. Chemischer Informationsdienst 1983, 14 (50), no-no.
[66]. Tsuritani, T.; Yamamoto, Y.; Kawasaki, M.; Mase, T., Novel Approach to 3,4-Dihydro-2(1H)-quinolinone Derivatives via Cyclopropane Ring Expansion. Organic Letters 2009, 11 (5), 1043-1045.
[67]. Zhou, W.; Zhang, L.; Jiao, N., The tandem reaction combining radical and ionic processes: an efficient approach to substituted 3,4-dihydroquinolin-2-ones. Tetrahedron 2009, 65 (10), 1982-1987.
[68]. Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J., Design, Synthesis, and Biological Evaluation of Platensimycin Analogues with Varying Degrees of Molecular Complexity. Journal of the American Chemical Society 2008, 130 (39), 13110-13119.
校內:2025-08-12公開