簡易檢索 / 詳目顯示

研究生: 柯繼勇
Priambodo, Ricky
論文名稱: 以流體化床結晶技術自TFT-LCD製程含磷廢水中合成藍鐵礦並回收再利用成正極材料磷酸鋰鐵之研究
Phosphorus contained TFT-LCD wastewater treatment by Fluidized Bed Crystallization: formation of vivianite and its application for cathode LiFePO4 manufacturing
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 216
中文關鍵詞: 流體化床均相成核結晶技術結晶磷回收藍鐵礦磷酸鋰鐵
外文關鍵詞: Homogeneous nucleation, Crystallization, Phosphorus recovery, Vivianite, Lithium Iron Phosphate
相關次數: 點閱:84下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多電子工廠常使用磷當作原料,所衍生出之廢水常旁放至河川中,造成優養化等河川污染問題。然而世界上有許多廢水處理技術包含(化學沉澱、生物降解等技術)嘗試將河川中的磷濃度降低或去除。然而這些技術的成本高,或是造成衍生污泥之問題,造成這些技術推廣困難。流體化床結晶技術開始於1970年代,使用載體可將磷結晶回收。但因為回收中仍有載體,因此回收回來的磷並非非常純,因此技術並未被受重視。本研究目的在於發展無載體磷酸亞鐵結晶技術,利用調控水利條件及化學藥品濃度達過飽和磷酸離子使磷酸亞鐵自然結晶。
    此研究發明利用TFT-LCD廢水實廠中利用流體化床結晶技術,處理工廠中之廢水。酸鹼濃度以及鐵磷比利用瓶杯試驗來找出最佳配比。於實廠中所產出的磷酸亞鐵結晶顆粒,利用XRD、SEM來測定顆粒中的成分及顆粒特性分析。研究結果顯示廢水中酸鹼值的控制是重要的參數可使廢水中的磷離子去除率及磷酸亞鐵結晶率達到最佳化。在酸鹼值5左右,鐵磷比在1.75,上流速度在20.06 – 42.36 m h-1,可達界穩定狀態1.94 kg-P h-1 m-2,可達到磷離子去除率90%以上,磷酸亞鐵結晶率85%以上。在最佳化條件下,可結晶成高純度磷酸亞鐵結晶物(藍鐵礦)。藍鐵礦將可成為鋰電池之負極材。
    模擬磷酸鋰鐵電池成分配比為Fe:Li:P: 抗壞血酸 莫爾比為 1:1:1:1。抗壞血酸是避免亞鐵離子氧化。磷酸鋰鐵材料在高溫500-800℃下準備,結晶樣品顆粒大小約在56 to 75 nm。而磷酸鋰鐵充放電測試,磷酸鋰鐵材料在700℃高溫處理10小時下,有最好的充放電能力,在0.1 C其放電能力約在143 mAh.g-1。由此研究可顯示從廢水回收合成之磷酸亞鐵可成為高純度磷酸鋰鐵電池之原料。

    Phosphorus enormously effluent from industrial factories is a major source that leads to water eutrophication. Many technologies, including chemical precipitation, biological degradation etc., have been designed to efficiently reduce the levels of phosphorous entering surface waters. These approaches mentioned above were not generally favored mainly due to the high chemical costs and/or the creation of an additional waste sludge. The fluidized bed crystallization (FBC) technology using the support materials to collect the precipitated phosphates has been developed since 1970s. However, the binary components of its byproduct do not agree with the important environmental issue “Sustainability”, nowadays. The purpose of this study is to develop an upgraded traditional FBC process, which is called “Fluidized bed Homogeneous crystallization technology, FBHC”, where the supersaturated phosphates spontaneously nucleate and grow in the bed without any seed (or support), just via the chemical and hydraulic controls.
    In this investigation, FBC and FBHC are utilized to treat phosphorus wastewater that is produced by the manufacture of thin film transistor-liquid crystal displays (TFT-LCD) wastewater. The pH and molar ratio of Fe/P for removing phosphorus was initially examined by performing a jar-test. The parameters of the FBC and FBHC - effluent pHe, Fe/P ratio and the upflow velocity (m h-1) - were tested to recover phosphorus from wastewater as ferrous phosphate pellets, characterized using an x-ray diffractometer (XRD) and scanning electron microscopy (SEM). The experimental results revealed that the control of effluent pHe was an essential parameter in maximizing the phosphorous removal (PR%) and crystallization ratio (CR%). At pHe 5, the supersaturation of phosphate precipitation by conditioning the molar ratio of Fe/P to 1.75 and upflow rate to a range of 20.06 – 42.36 m h-1 was adjusted in the metastable zone at a cross-section loading of 1.94 kg-P h-1 m-2, leading to a phosphorus removal (PR) of 90% and a crystallization ratio (CR) of 85%. Under optimal hydraulic conditions, the treatment of real wastewater in a FBC process was viable by converting the pollutant into crystals with a high-purity phase of vivianite (Fe3(PO4)2.8 H2O). Vivianite pellets will serve as the raw material of the promising cathode material “LiFePO4” in the lithium secondary battery.
    The synthesis of LIFePO4 was achieved with solid state reaction between vivianite, lithium phosphate and ascorbic acid. The material were prepared by Fe:Li:P:Ascorbic acid molar ratio are 1:1:1:1, respectively. Ascorbic acid was used to prevent the oxidation of ferrous ions. The LiFePO4 was prepared in the temperature range of 500 – 800 0C, the crystallite sizes of the sample were between 56 to 75 nm, the charge and discharge test shows that material prepared at 700 0C for 10 h have a good electrochemical performance, at a rate of 0.1 C the discharge capacity of the material is 143 mAh.g-1. The recovered crystals (vivianite) can be used as a raw material in the LiFePO4 secondary battery.

    ABSTRACT i ACKNOWLEDGEMENT iv CONTENTS vi LIST OF TABLES xii LIST OF FIGURES xiii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research objective 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 TFT-LCD industry 5 2.2 Phosphorus 6 2.2.1 Phosphorus chemistry 7 2.2.2 Phosphorus applications 9 2.2.3 Source pollutants of phosphorus 9 2.2.4 Phosphorus discharge standard 10 2.3 Phosphorus removal technology 10 2.3.1 Chemical precipitation and Coagulation/ Flocculation 11 2.3.2 Biological treatment 12 2.3.3 Adsorption 13 2.3.4 Ion-Exchange 14 2.3.5 Membrane Separation 15 2.4 Fluidized-Bed Crystallization (FBC) 18 2.5 Fluidized-Bed Homogeneous Crystallization (FBHC) 24 2.6 Nucleation and Crystal Growth 28 2.7 Vivianite precipitation chemistry 33 2.8 Battery as storage 38 2.9 Lithium ion battery 39 2.9.1 Components of Lithium ion batteries 41 2.9.1.1 Anode 41 2.9.1.2 Cathode 41 2.9.1.2 Electrolyte 42 2.11 Structure of Lithium Iron Phosphate (LiFePO4) 42 2.10 Current Status of Lithium Ion Secondary Batteries in Taiwan 43 2.12 Electrochemical properties of LiFePO4 44 2.13 Synthesis of LiFePO4 44 2.13.1 Solid State method 44 2.13.2 Hydrothermal / Solvothermal method 46 2.13.3 Microwave sintering method 47 2.13.4 Sol-Gel method 47 2.13.5 Co-precipitation 49 CHAPTER 3 EXPERIMENTAL METHODS 53 3.1 Research framework 53 3.2 Materials and analytical methods 58 3.2.1Materials 58 3.2.2Analytical methods 58 3.3 Analytical instruments 59 3.3.1 ICP – OES (Inductively Coupled Plasma - Optical Emission Spectrometer) 59 3.3.2 XRD (X – Ray Diffractometer) 60 3.3.3 SEM (Scanning Electron Microscope) 61 3.3.4 FTIR (Fourier Transform Infrared Spectroscopy) 61 3.3.5 TOC (Total Organic Carbon analyzer) 62 3.3.6 IC (Ion Chromatography Analysis) 63 3.3.7 BAT (Battery Automatic Tester) 63 3.4 Experimental apparatus 64 3.4.1 Jar-test 64 3.4.2 FBC and FBHC apparatus 65 3.4.3 FBHC pilot apparatus (90L) 68 3.4.4 FBHC pilot apparatus (250L) 69 3.4.5 Coin Cell Construction 71 3.5 Experimental procedure 71 3.5.1 Jar-test 71 3.5.2 FBC process 72 3.5.3 FBHC process 72 3.5.4 FBHC pilot process 73 3.5.5 Crystal Characteristic 73 3.5.6 Synthesis of the LiFePO4 73 3.5.6.1 Calcination process 74 3.5.7 Battery construction 74 CHAPTER 4 RESULTS AND DISCUSSION 75 4.1 Characteristics of wastewater 75 4.2 Chemical precipitation 76 4.2.1 Effect of pH 76 4.2.2 Effect of molar ratio Fe(II)/P 78 4.3 FBC 80 4.3.1 Effect of effluent pH 82 4.3.2 Effect of Fe(II)/P molar ratio 84 4.3.3 Effect of Upflow velocity 85 4.3.4 Characterization of FBC product 88 A. Surface morphology of vivianite 88 B. Crystal structure analysis of vivianite 90 C. Elemental analysis and composition analysis of vivianite 91 D. Particle size distributions of vivianite 92 4.3.5 Mechanism of heterogeneous nucleation 93 4.4 FBHC 94 4.4.1 Vivianite crystal synthesis 94 4.3.2 Effect of effluent pH 96 4.3.3 Effect of Fe(II)/P molar ratio 98 4.3.4 Effect of upflow velocity 99 4.3.5 Effect of surface loading 100 4.3.6 Characterization of FBHC product 102 A. Surface morphology 102 B. Crystal structure analysis of vivianite 103 C. Elemental analysis and composition analysis of vivianite 104 D. Fourier-transform infrared spectroscopy of vivianite 106 E. Thermogravimetric analysis of vivianite 107 F. Particle size distributions 108 4.3.7 Mechanism of homogeneous nucleation 109 4.5 Pilot plant 110 4.5.1 Small pilot reactor 90L 111 A. Phosphorus concentration in wastewater 111 B. Effect of effluent pH 112 C. Effect of Fe(II)/P molar ratio 113 D. Effect of upflow velocity 114 E. Crystal characterization 116 1. Surface morphology 116 2. Crystal structure analysis of vivianite 117 3. Elemental analysis and composition analysis of vivianite 118 4. Fourier-transform infrared spectroscopy of vivianite 120 5. Thermogravimetric analysis of vivianite 121 6. Particle size distributions 122 4.5.2 High pilot reactor 210L 123 A. phosphorus concentration in wastewater 123 B. Ferrous iron sources 124 C. Effect of effluent pH 126 D. Effect of Fe(II)/P molar ratio 127 E. Effect of upflow velocity 128 F. Crystal characterization 129 1. Surface morphology 129 2. Crystal structure analysis of vivianite 130 3. Elemental analysis and composition analysis of vivianite 131 4. Fourier-transform infrared spectroscopy of vivianite 133 5. Thermogravimetric analysis of vivianite 134 6. Particle size distributions 135 4.6 Synthesis of LiFePO4 136 4.6.1 Vivianite pellets 136 4.6.2 Lithium phosphate 138 4.6.2 Ascorbic Acid 141 4.6.3 Thermogravimetric analysis of synthesis LiFePO4 143 4.6.4 X-ray diffraction synthesis of LiFePO4 144 4.6.4 Scanning electron microscopy of LiFePO4 145 4.6.5 Cyclic voltammogram test 148 4.6.5 Electrochemical performance 149 CHAPTER 5 CONCLUSION AND RECOMMENDATION 152 5.1 Conclusion 152 5.2 Recommendation 153 REFERENCES 154 APPENDIX 169 1. FBHC 90L scheme diagram 169 2. FBHC 210L scheme diagram 170 3. Assembly Cr2032 lithium battery. 171 4. Preparing crystal seed in pilot plant. 175 5. Wastewater quality 178 6. Chemical precipitation 180 7. Crystal pilot FBHC XRF data 182 8. Chemical precipitation effluent 188 Biography 190 傳記 191

    [1] J.M. Abell, D. Özkundakci, D.P. Hamilton, Nitrogen and Phosphorus Limitation of Phytoplankton Growth in New Zealand Lakes: Implications for Eutrophication Control, Ecosystems, 13 (2010) 966-977.
    [2] K. Meinikmann, M. Hupfer, J. Lewandowski, Phosphorus in groundwater discharge – A potential source for lake eutrophication, Journal of Hydrology, 524 (2015) 214-226.
    [3] A.E. Ulrich, E. Frossard, On the history of a reoccurring concept: Phosphorus scarcity, Science of The Total Environment, 490 (2014) 694-707.
    [4] S.-H. Chuang, W.-C. Chang, Y.-H. Huang, C.-C. Tseng, C.-C. Tai, Effects of different carbon supplements on phosphorus removal in low C/P ratio industrial wastewater, Bioresource Technology, 102 (2011) 5461-5465.
    [5] B.L. Turner, A.W. Cheesman, L.M. Condron, K. Reitzel, A.E. Richardson, Introduction to the special issue: Developments in soil organic phosphorus cycling in natural and agricultural ecosystems, Geoderma, 257–258 (2015) 1-3.
    [6] H. Huang, J. Liu, P. Zhang, D. Zhang, F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation, Chemical Engineering Journal, 307 (2017) 696-706.
    [7] T.C. Chen, Y.J. Shih, C.C. Chang, Y.H. Huang, Novel adsorbent of removal phosphate from TFT LCD wastewater, Journal of the Taiwan Institute of Chemical Engineers, 44 (2013) 61-66.
    [8] C.-C. Su, C.-M. Chen, J. Anotai, M.-C. Lu, Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized-bed Fenton process, Chemical Engineering Journal, 222 (2013) 128-135.
    [9] H. Chen, D. Wang, X. Li, Q. Yang, K. Luo, G. Zeng, M. Tang, W. Xiong, G. Yang, Effect of dissolved oxygen on biological phosphorus removal induced by aerobic/extended-idle regime, Biochemical Engineering Journal, 90 (2014) 27-35.
    [10] T. Tervahauta, R.D. van der Weijden, R.L. Flemming, L. Hernández Leal, G. Zeeman, C.J.N. Buisman, Calcium phosphate granulation in anaerobic treatment of black water: A new approach to phosphorus recovery, Water Research, 48 (2014) 632-642.
    [11] L. Ruihua, Z. Lin, T. Tao, L. Bo, Phosphorus removal performance of acid mine drainage from wastewater, Journal of Hazardous Materials, 190 (2011) 669-676.
    [12] H. Huang, D. Zhang, Z. Zhao, P. Zhang, F. Gao, Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation, Journal of Cleaner Production, 141 (2017) 429-438.
    [13] J. Xie, Z. Wang, S. Lu, D. Wu, Z. Zhang, H. Kong, Removal and recovery of phosphate from water by lanthanum hydroxide materials, Chemical Engineering Journal, 254 (2014) 163-170.
    [14] C. Kappel, K. Yasadi, H. Temmink, S.J. Metz, A.J.B. Kemperman, K. Nijmeijer, A. Zwijnenburg, G.J. Witkamp, H.H.M. Rijnaarts, Electrochemical phosphate recovery from nanofiltration concentrates, Separation and Purification Technology, 120 (2013) 437-444.
    [15] M.S. Rahaman, D.S. Mavinic, A. Meikleham, N. Ellis, Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor, Water Research, 51 (2014) 1-10.
    [16] Y. Song, Y. Dai, Q. Hu, X. Yu, F. Qian, Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater, Chemosphere, 101 (2014) 41-48.
    [17] J. Zhang, Z. Shen, Z. Mei, S. Li, W. Wang, Removal of phosphate by Fe-coordinated amino-functionalized 3D mesoporous silicates hybrid materials, Journal of Environmental Sciences, 23 (2011) 199-205.
    [18] J.L. Campos, L. Otero, A. Franco, A. Mosquera-Corral, E. Roca, Ozonation strategies to reduce sludge production of a seafood industry WWTP, Bioresource Technology, 100 (2009) 1069-1073.
    [19] Q. Ping, Y. Li, X. Wu, L. Yang, L. Wang, Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations, Journal of Hazardous Materials, 310 (2016) 261-269.
    [20] H. Huang, J. Liu, S. Wang, Y. Jiang, D. Xiao, L. Ding, F. Gao, Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component, Ecological Engineering, 92 (2016) 111-118.
    [21] L. Vasenko, H. Qu, Effect of NH4-N/P and Ca/P molar ratios on the reactive crystallization of calcium phosphates for phosphorus recovery from wastewater, Journal of Crystal Growth, 459 (2017) 61-66.
    [22] Y. Song, P.G. Weidler, U. Berg, R. Nüesch, D. Donnert, Calcite-seeded crystallization of calcium phosphate for phosphorus recovery, Chemosphere, 63 (2006) 236-243.
    [23] E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández, M.A. Rodrigo, Electrochemical phosphates removal using iron and aluminium electrodes, Chemical Engineering Journal, 172 (2011) 137-143.
    [24] S. Elabbas, N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M.N. Pons, F. Lapicque, J.P. Leclerc, Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode, Journal of Hazardous Materials, 319 (2016) 69-77.
    [25] Y.H. Huang, Y.J. Shih, C.C. Chang, S.H. Chuang, A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process, Desalination and Water Treatment, 32 (2011) 351-356.
    [26] Y. Liu, S. Kumar, J.-H. Kwag, C. Ra, Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review, Journal of Chemical Technology & Biotechnology, 88 (2013) 181-189.
    [27] M.M. Seckler, O.S.L. Bruinsma, G.M. Van Rosmalen, Calcium phosphate precipitation in a fluidized bed in relation to process conditions: A black box approach, Water Research, 30 (1996) 1677-1685.
    [28] M.M. Seckler, M.L.J. van Leeuwen, O.S.L. Bruinsma, G.M. van Rosmalen, Phosphate removal in a fluidized bed—II. Process optimization, Water Research, 30 (1996) 1589-1596.
    [29] X. Ou, H. Gu, Y. Wu, J. Lu, Y. Zheng, Chemical and morphological transformation through hydrothermal process for LiFePO4 preparation in organic-free system, Electrochimica Acta, 96 (2013) 230-236.
    [30] Y. Liu, J. Gu, J. Zhang, J. Wang, N. Nie, Y. Fu, W. Li, F. Yu, Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries, Electrochimica Acta, 173 (2015) 448-457.
    [31] V.V. Ranade, V.M. Bhandari, Industrial wastewater treatment, recycling and reuse, Butterworth-Heinemann, Oxford, UK, 2014.
    [32] S.-C. Chang, The TFT–LCD industry in Taiwan: competitive advantages and future developments, Technology in Society, 27 (2005) 199-215.
    [33] B. Jeong, S.-W. Kim, Y.-J. Lee, An assembly scheduler for TFT LCD manufacturing, Computers & Industrial Engineering, 41 (2001) 37-58.
    [34] J.C. Chen, T.-L. Chen, B.R. Pratama, Q.-F. Tu, Capacity planning in thin film transistor – Liquid crystal display cell process, Journal of Manufacturing Systems, 39 (2016) 63-78.
    [35] K.-L. Lin, W.-K. Chang, T.-C. Chang, C.-H. Lee, C.-H. Lin, Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as glass–ceramics, Journal of Cleaner Production, 17 (2009) 1499-1503.
    [36] T.L. Chen, J.T. Lin, S.c. Fang, A shadow-price based heuristic for capacity planning of TFT-LCD manufacturing, Journal of Industrial and Management Optimization, 6 (2010) 209-239.
    [37] Mineral Commodity Summaries, in: U.S.G. Survey (Ed.), USA, 2017.
    [38] 2015 Minerals Yearbook, in: U.S.G. Survey (Ed.) Phosphate Rock, 2015, pp. 56.51.
    [39] W.J. Schipper, A. Klapwijk, B. Potjer, W.H. Rulkens, B.G. Temmink, F.D.G. Kiestra, A.C.M. Lijmbach, Phosphate Recycling in the Phosphorus Industry, Environmental Technology, 22 (2001) 1337-1345.
    [40] U. EPA, Effluent Standards and Limitations for Phosphorus, in.
    [41] E. Pierri, D. Tsamouras, E. Dalas, Ferric phosphate precipitation in aqueous media, Journal of Crystal Growth, 213 (2000) 93-98.
    [42] W. Xie, Q. Wang, H. Ma, Y. Ohsumi, H.I. Ogawa, Study on phosphorus removal using a coagulation system, Process Biochemistry, 40 (2005) 2623-2627.
    [43] L. Qiu, P. Zheng, M. Zhang, X. Yu, G. Abbas, Phosphorus removal using ferric–calcium complex as precipitant: Parameters optimization and phosphorus-recycling potential, Chemical Engineering Journal, 268 (2015) 230-235.
    [44] A.E. Greenburn, G. Levin, W.J. Kauffman, The effect of phosphorus removal on the activated sludge process, Sewage Ind Wastes, 25 (1955) 227.
    [45] I. Stratful, S. Brett, M.B. Scrimshaw, J.N. Lester, Biological Phosphorus Removal, Its Role in Phosphorus Recycling, Environmental Technology, 20 (1999) 681-695.
    [46] K. Sakadevan, H.J. Bavor, Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems, Water Research, 32 (1998) 393-399.
    [47] A. Ugurlu, B. Salman, Phosphorus removal by fly ash, Environment International, 24 (1998) 911-918.
    [48] L. Zeng, X. Li, J. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Research, 38 (2004) 1318-1326.
    [49] S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, T. Tamura, Removal of phosphate by aluminum oxide hydroxide, Journal of Colloid and Interface Science, 257 (2003) 135-140.
    [50] V.R. Vivek, M.B. Vinay, WASTEWATER TREATMENT, RECYCLING, AND REUSE, Butterworth-Heinemann, UK, 2014.
    [51] R.L. Parfitt, R.J. Atkinson, R.S.C. Smart, The Mechanism of Phosphate Fixation by Iron Oxides1, Soil Science Society of America Journal, 39 (1975) 837-841.
    [52] Y. Wang, Y. Yu, H. Li, C. Shen, Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric–alum water treatment residues, Journal of Environmental Sciences, 50 (2016) 79-86.
    [53] C.-j. Liu, Y.-z. Li, Z.-k. Luan, Z.-y. Chen, Z.-g. Zhang, Z.-p. Jia, Adsorption removal of phosphate from aqueous solution by active red mud, Journal of Environmental Sciences, 19 (2007) 1166-1170.
    [54] M. Zarrabi, M.M. Soori, M. Noori sepehr, A. Amrane, S. Borji, H. Ghafari, Removal of phosphorus by ion-exchange resins: Equilibrium, kinetic and thermodynamic studies, 2014.
    [55] T. Nur, W.G. Shim, M.A.H. Johir, S. Vigneswaran, J. Kandasamy, Modelling of phosphorus removal by ion-exchange resin (Purolite FerrIX A33E) in fixed-bed column experiments, Desalination and Water Treatment, 52 (2014) 784-790.
    [56] G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review: Phosphorus removal and recovery technologies, Science of The Total Environment, 212 (1998) 69-81.
    [57] C.P. Leo, W.K. Chai, A.W. Mohammad, Y. Qi, A.F. Hoedley, S.P. Chai, Phosphorus removal using nanofiltration membranes, Water science and technology : a journal of the International Association on Water Pollution Research, 64 (2011) 199-205.
    [58] A. Dietze, R. Gnirss, U. Wiesmann, Phosphorus removal with membrane filtration for surface water treatment, Water science and technology : a journal of the International Association on Water Pollution Research, 46 (2002) 257-264.
    [59] C. Vohla, M. Kõiv, H.J. Bavor, F. Chazarenc, Ü. Mander, Filter materials for phosphorus removal from wastewater in treatment wetlands—A review, Ecological Engineering, 37 (2011) 70-89.
    [60] L.G. Gibilaro, Fluidization Dynamics, 1 ed., Butterworth-Heinemann, England, 2001.
    [61] D. Kunii, O. Levenspiel, Fluidization Enginering, 2 ed., Reed Publising Inc, USA, 1991.
    [62] K. Suzuki, Y. Tanaka, T. Osada, M. Waki, Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration, Water Research, 36 (2002) 2991-2998.
    [63] J.A. Wilsenach, C.A.H. Schuurbiers, M.C.M. van Loosdrecht, Phosphate and potassium recovery from source separated urine through struvite precipitation, Water Research, 41 (2007) 458-466.
    [64] E.-H. Kim, S.-B. Yim, H.-C. Jung, E.-J. Lee, Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material, Journal of Hazardous Materials, 136 (2006) 690-697.
    [65] E.-H. Kim, D.-W. Lee, H.-K. Hwang, S. Yim, Recovery of phosphates from wastewater using converter slag: Kinetics analysis of a completely mixed phosphorus crystallization process, Chemosphere, 63 (2006) 192-201.
    [66] P. Battistoni, P. Pavan, M. Prisciandaro, F. Cecchi, Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants, Water Research, 34 (2000) 3033-3041.
    [67] I. Stratful, M.D. Scrimshaw, J.N. Lester, Conditions influencing the precipitation of magnesium ammonium phosphate, Water Research, 35 (2001) 4191-4199.
    [68] H. Jang, S.-H. Kang, Phosphorus removal using cow bone in hydroxyapatite crystallization, Water Research, 36 (2002) 1324-1330.
    [69] J.D. Doyle, K. Oldring, J. Churchley, S.A. Parsons, Struvite formation and the fouling propensity of different materials, Water Research, 36 (2002) 3971-3978.
    [70] J. Wang, Y. Song, P. Yuan, J. Peng, M. Fan, Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery, Chemosphere, 65 (2006) 1182-1187.
    [71] K. Kaikake, T. Sekito, Y. Dote, Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash, Waste Management, 29 (2009) 1084-1088.
    [72] P. Battistoni, G. Fava, P. Pavan, A. Musacco, F. Cecchi, Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: Preliminary results, Water Research, 31 (1997) 2925-2929.
    [73] A. Giesen, Crystallisation Process Enables Environmental Friendly Phosphate Removal at Low Costs, Environmental Technology, 20 (1999) 769-775.
    [74] E.V. Münch, K. Barr, Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams, Water Research, 35 (2001) 151-159.
    [75] Y. Song, P. Yuan, B. Zheng, J. Peng, F. Yuan, Y. Gao, Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater, Chemosphere, 69 (2007) 319-324.
    [76] C.-S. Chen, Y.-J. Shih, Y.-H. Huang, Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system, Chemical Engineering Journal, 279 (2015) 120-128.
    [77] R. Priambodo, Y.-L. Tan, Y.-J. Shih, Y.-H. Huang, Fluidized-bed crystallization of iron phosphate from solution containing phosphorus, Journal of the Taiwan Institute of Chemical Engineers, (2017).
    [78] C.-C. Su, R.L. Reano, M.L.P. Dalida, M.-C. Lu, Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed, Chemosphere, 105 (2014) 100-105.
    [79] Y.-J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.-H. Huang, M.-C. Lu, Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions, Chemosphere, 173 (2017) 466-473.
    [80] R. Aldaco, A. Garea, A. Irabien, Particle growth kinetics of calcium fluoride in a fluidized bed reactor, Chemical Engineering Science, 62 (2007) 2958-2966.
    [81] Y.-J. Shih, H.-C. Chang, Y.-H. Huang, Reclamation of phosphorus from aqueous solutions as alkaline earth metal phosphate in a fluidized-bed homogeneous crystallization (FBHC) process, Journal of the Taiwan Institute of Chemical Engineers, 62 (2016) 177-186.
    [82] M.D.G. de Luna, D.P.M. Rance, L.M. Bellotindos, M.-C. Lu, Removal of sulfate by fluidized bed crystallization process, Journal of Environmental Chemical Engineering, 5 (2017) 2431-2439.
    [83] H.P.R. Guevara, F.C. Ballesteros, A.C. Vilando, M.D.G. de Luna, M.-C. Lu, Recovery of oxalate from bauxite wastewater using fluidized-bed homogeneous granulation process, Journal of Cleaner Production, 154 (2017) 130-138.
    [84] F.C. Ballesteros, A.F.S. Salcedo, A.C. Vilando, Y.-H. Huang, M.-C. Lu, Removal of nickel by homogeneous granulation in a fluidized-bed reactor, Chemosphere, 164 (2016) 59-67.
    [85] A.F.M. Salcedo, F.C. Ballesteros, A.C. Vilando, M.-C. Lu, Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous fluidized bed granulation process, Separation and Purification Technology, 169 (2016) 128-136.
    [86] N.N.N. Mahasti, Y.-J. Shih, X.-T. Vu, Y.H. Huang, Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) process, Journal of the Taiwan Institute of Chemical Engineers, 78 (2017) 378-385.
    [87] K. Shimamura, H. Ishikawa, T. Tanaka, I. Hirasawa, Use of a Seeder Reactor to Manage Crystal Growth in the Fluidized Bed Reactor for Phosphorus Recovery, Water Environment Research, 79 (2007) 406-413.
    [88] K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresource Technology, 98 (2007) 1573-1578.
    [89] X. Ye, Z.-L. Ye, Y. Lou, S. Pan, X. Wang, M.K. Wang, S. Chen, A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater, Powder Technology, 295 (2016) 16-26.
    [90] C.-C. Su, L.D. Dulfo, M.L.P. Dalida, M.-C. Lu, Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg:P molar ratio and seed, Separation and Purification Technology, 125 (2014) 90-96.
    [91] C.-C. Su, R.R.M. Abarca, M.D.G. de Luna, M.-C. Lu, Phosphate recovery from fluidized-bed wastewater by struvite crystallization technology, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 2395-2402.
    [92] J.A. Dirksen, T.A. Ring, Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology, Chemical Engineering Science, 46 (1991) 2389-2427.
    [93] T. Sugimoto, Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science, 28 (1987) 65-108.
    [94] A.S. Myerson, Handbook of Industrial Crystallization, 2 ed., Butterworth-Heinemann, New york, USA, 2002.
    [95] A.G. Jones, Crystallization Process Systems, Butterworth-Heinemann, London, UK, 2002.
    [96] M. Kind, A. Mersmann, On supersaturation during mass crystallization from solution, Chemical Engineering & Technology, 13 (1990) 50-62.
    [97] A.E. Nielsen, J.M. Toft, Electrolyte crystal growth kinetics, Journal of Crystal Growth, 67 (1984) 278-288.
    [98] P.G. Manning, T.P. Murphy, E.E. Prepas, Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta, The Canadian Mineralogist, 29 (1991) 77-85.
    [99] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries, Advanced materials (Deerfield Beach, Fla.), 23 (2011) 1695-1715.
    [100] M. Barghamadi, A. Kapoor, C. Wen, A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery, Journal of The Electrochemical Society, 160 (2013) A1256-A1263.
    [101] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, S.-J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Materials Research Bulletin, 43 (2008) 1913-1942.
    [102] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, 195 (2010) 2419-2430.
    [103] P. Kurzweil, K. Brandt, Secondary batteries-lithium rechargeable systems: Overview, Encyclopedia of Electrochemical Power Sources 5(2009) 1-26.
    [104] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, 2 (2009) 638-654.
    [105] A. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, Effect of Structure on the Fe3 +  / Fe2 +  Redox Couple in Iron Phosphates, Journal of The Electrochemical Socirty, 144 (1997) 1609-1613.
    [106] C.V. Ramana, A. Mauger, F. Gendron, C.M. Julien, K. Zaghib, Study of the Li-insertion/extraction process in LiFePO4/FePO4, Journal of Power Sources, 187 (2009) 555-564.
    [107] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material, Chemistry of Materials, 17 (2005) 5085-5092.
    [108] D. Morgan, A. Van der ven, G. Ceder, Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) Olivine Materials, Electrochemical and Solid State letter, 7 (2004) A30-A32.
    [109] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, 144 (1997) 1188-1194.
    [110] A.S. Andersson, J.O. Thomas, The source of first-cycle capacity loss in LiFePO4, Journal of Power Sources, 97 (2001) 498-502.
    [111] Z. Gong, Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy & Environmental Science, 4 (2011) 3223-3242.
    [112] A. Yamada, S.C. Chung, K. Hinokuma Optimized LiFePO4 for Lithium Battery Cathodes, Journal of The Electrochemical Society, 148 (2001) A224-A229.
    [113] D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Improving the rate performance of LiFePO4 by Fe-site doping, Electrochimica Acta, 50 (2005) 2955-2958.
    [114] B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 458 (2009) 190-193.
    [115] G.T.-K. Fey, Y.G. Chen, H.-M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling, Journal of Power Sources, 189 (2009) 169-178.
    [116] M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H. Rensmo, H. Siegbahn, N. Ravet, M. Armand, J.O. Thomas, K. Edström, Surface Chemistry of Carbon-Treated LiFePO4 Particles for Li-Ion Battery Cathodes Studied by PES, Electrochemical and Solid-State Letters, 6 (2003) A202-A206.
    [117] M. Zhou, J. Qian, Y. Cao, H. Yang, Low temperature hydrothermal synthesis and electrochemical performances of LiFePO4 microspheres as a cathode material for lithium-ion batteries, Chinese Science Bulletin, 57 (2012) 4164-4169.
    [118] S. Yang, P.Y. Zavalij, M. Stanley Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications, 3 (2001) 505-508.
    [119] B. Ellis, W.H. Kan, W.R.M. Makahnouk, L.F. Nazar, Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4, Journal of Materials Chemistry, 17 (2007) 3248-3254.
    [120] K. Dokko, K. Shiraishi, K. Kanamura, Identification of Surface Impurities on LiFePO4 Particles Prepared by a Hydrothermal Process, Journal of The Electrochemical Socirty, 152 (2005) A2199-A2202.
    [121] L. Wang, Y. Huang, R. Jiang, D. Jia, Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating, Electrochimica Acta, 52 (2007) 6778-6783.
    [122] M.-S. Song, Y.-M. Kang, J.-H. Kim, H.-S. Kim, D.-Y. Kim, H.-S. Kwon, J.-Y. Lee, Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating, Journal of Power Sources, 166 (2007) 260-265.
    [123] S. Beninati, L. Damen, M. Mastragostino, MW-assisted synthesis of LiFePO4 for high power applications, Journal of Power Sources, 180 (2008) 875-879.
    [124] M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, Synthesis of LiFePO4 cathode material by microwave processing, Journal of Power Sources, 119 (2003) 258-261.
    [125] X.-F. Guo, H. Zhan, Y.-H. Zhou, Rapid synthesis of LiFePO4/C composite by microwave method, Solid State Ionics, 180 (2009) 386-391.
    [126] F. Croce, A. D’ Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode, Electrochemical and Solid-State Letters, 5 (2002) A47-A50.
    [127] D. Choi, P.N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, Journal of Power Sources, 163 (2007) 1064-1069.
    [128] Y. Hu, M.M. Doeff, R. Kostecki, R. Fiñones, Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries, Journal of The Electrochemical Society, 151 (2004) A1279-A1285.
    [129] M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel, J. Jamnik, Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid, Solid State Ionics, 176 (2005) 1801-1805.
    [130] J.D. Wilcox, M.M. Doeff, M. Marcinek, R. Kostecki, Factors Influencing the Quality of Carbon Coatings on LiFePO4, Journal of The Electrochemical Society, 154 (2007) A389-A395.
    [131] K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang, Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route, Journal of Materials Chemistry, 14 (2004) 2690-2695.
    [132] M.-R. Yang, W.-H. Ke, S.-H. Wu, Preparation of LiFePO4 powders by co-precipitation, Journal of Power Sources, 146 (2005) 539-543.
    [133] Y.-U. Park, J. Kim, H. Gwon, D.-H. Seo, S.-W. Kim, K. Kang, Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization, Chemistry of Materials, 22 (2010) 2573-2581.
    [134] A. Al-Borno, M.B. Tomson, The temperature dependence of the solubility product constant of vivianite, Geochimica et Cosmochimica Acta, 58 (1994) 5373-5378.
    [135] L. Montastruc, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, Use of genetic algorithms and gradient based optimization techniques for calcium phosphate precipitation, Chemical Engineering and Processing: Process Intensification, 43 (2004) 1289-1298.
    [136] H. Takiyama, Supersaturation operation for quality control of crystalline particles in solution crystallization, Advanced Powder Technology, 23 (2012) 273-278.
    [137] Y. Wang, K.H. Tng, H. Wu, G. Leslie, T.D. Waite, Removal of phosphorus from wastewaters using ferrous salts – A pilot scale membrane bioreactor study, Water Research, 57 (2014) 140-150.
    [138] L. Pastor, D. Mangin, J. Ferrer, A. Seco, Struvite formation from the supernatants of an anaerobic digestion pilot plant, Bioresour Technol, 101 (2010) 118-125.
    [139] C.-C. Chang, Study on Phosphorus Removal by Fluidized-bed Crystallization Technology: Metal Reagent Effect, in: Chemical Engineering, National Cheng Kung University, Tainan, 2009.
    [140] R. Diz Harry, T. Novak John, Fluidized Bed for Removing Iron and Acidity from Acid Mine Drainage, Journal of Environmental Engineering, 124 (1998) 701-708.
    [141] C.Y. Tai, W.C. Chien, C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer, AIChE Journal, 45 (1999) 1605-1614.
    [142] V.J. Inglezakis , S.G. Poulopoulos, Adsorption, ion exchange and catalysis: design of operations and environmental applications, Elsevier, Netherlands, 2006.
    [143] G. McGowan, J. Prangnell, The significance of vivianite in archaeological settings, Geoarchaeology, 21 (2006) 93-111.
    [144] N. Sleiman, V. Deluchat, M. Wazne, M. Mallet, A. Courtin-Nomade, V. Kazpard, M. Baudu, Phosphate removal from aqueous solutions using zero valent iron (ZVI): Influence of solution composition and ZVI aging, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514 (2017) 1-10.
    [145] Y.-S. Jun, D. Kim, C.W. Neil, Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces, Accounts of Chemical Research, 49 (2016) 1681-1690.
    [146] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinemann, Oxford, Great Britain, 2003.
    [147] J.P. Chen, Decontamination of Heavy Metals: Processes, Mechanism, and Application, CRC Press, NW, United States, 2012.
    [148] R.L. Frost, A. López, F.L. Theiss, R. Scholz, L. Souza, The molecular structure of the phosphate mineral kidwellite NaFe93+(PO4)6(OH)11⋅3H2O – A vibrational spectroscopic study, Journal of Molecular Structure, 1074 (2014) 429-434.
    [149] R. Scholz, R.L. Frost, Y. Xi, L.M. Graça, L. Lagoeiro, A. López, Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite – Zn2Fe(PO4)2•4H2O, from Hagendorf Süd, Germany and in comparison with other zinc phosphates, Journal of Molecular Structure, 1039 (2013) 22-27.
    [150] M. Klähn, G. Mathias, C. Kötting, M. Nonella, J. Schlitter, K. Gerwert, P. Tavan, IR Spectra of Phosphate Ions in Aqueous Solution:  Predictions of a DFT/MM Approach Compared with Observations, The Journal of Physical Chemistry A, 108 (2004) 6186-6194.
    [151] L. Berzina-Cimdina, N. Borodajenko, Infrared Spectroscopy - Materials Science, Engineering and
    Technology InTech, Croatia/ Shanghai, 2012.
    [152] R.L. Frost, Y. Xi, R. Scholz, A. López, C. Moreira, J.C. de Lena, Raman spectroscopic study of the mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3, a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114 (2013) 486-490.
    [153] R.L. Frost, R. Scholz, A. Lópes, Y. Xi, Ž.Ž. Gobac, L.F.C. Horta, Raman and infrared spectroscopic characterization of the phosphate mineral paravauxite Fe2+Al2(PO4)2(OH)2⋅8H2O, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116 (2013) 491-496.
    [154] R.L. Frost, R. Scholz, A. López, B.E. Firmino, C. Lana, Y. Xi, A Raman and infrared spectroscopic characterisation of the phosphate mineral phosphohedyphane Ca2Pb3(PO4)3Cl from the Roote mine, Nevada, USA, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127 (2014) 237-242.
    [155] R.L. Frost, R. Scholz, A. López, Y. Xi, A vibrational spectroscopic study of the phosphate mineral whiteite CaMn++Mg2Al2(PO4)4(OH)2•8(H2O), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124 (2014) 243-248.
    [156] R.L. Frost, R. Scholz, F.M. Belotti, A. López, F.L. Theiss, A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3•9H2O, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147 (2015) 185-192.
    [157] R.L. Frost, A. López, F.L. Theiss, G.M. Aarão, R. Scholz, A vibrational spectroscopic study of the phosphate mineral rimkorolgite (Mg,Mn2+)5(Ba, Sr)(PO4)4•8H2O from Kovdor massif, Kola Peninsula, Russia, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132 (2014) 762-766.
    [158] R.L. Frost, A. López, F.L. Theiss, L.M. Graça, R. Scholz, A vibrational spectroscopic study of the silicate mineral lomonosovite Na5Ti2(Si2O7)(PO4)O2, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134 (2015) 53-57.
    [159] R.L. Frost, R. Scholz, A. López, C. Lana, Y. Xi, A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3(PO4)2(OH)4⋅2(H2O) from Brazil, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126 (2014) 164-169.
    [160] D. Luna-Zaragoza, E.T. Romero-Guzm¨¢n, L.R. Reyes-Guti¨¦rrez, Surface and Physicochemical Characterization of Phosphates Vivianite,, Journal of Minerals and Materials Characterization and Engineering, Vol.08No.08 (2009) 19.
    [161] Y. Song, H.H. Hahn, E. Hoffmann, Effects of solution conditions on the precipitation of phosphate for recovery: A thermodynamic evaluation, Chemosphere, 48 (2002) 1029-1034.
    [162] R.L. Frost, M.L. Weier, W. Martens, J.T. Kloprogge, Z. Ding, Dehydration of synthetic and natural vivianite, Thermochimica Acta, 401 (2003) 121-130.
    [163] N.I.P. Ayu, E. Kartini, L.D. Prayogi, M. Faisal, Supardi, Crystal structure analysis of Li3PO4 powder prepared by wet chemical reaction and solid-state reaction by using X-ray diffraction (XRD), Ionics, 22 (2016) 1051-1057.
    [164] L. Popović, B. Manoun, D. de Waal, M.K. Nieuwoudt, J.D. Comins, Raman spectroscopic study of phase transitions in Li3PO4, Journal of Raman Spectroscopy, 34 (2003) 77-83.
    [165] C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, H.L. Li, Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs, Powder Technology, 181 (2008) 301-306.
    [166] H. Karami, F. Taala, Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries, Journal of Power Sources, 196 (2011) 6400-6411.
    [167] P. Karrer, The Chemistry of Vitamins A and C, Chemical Reviews, 14 (1934) 17-30.
    [168] M. Ambrosi, E. Fratini, V. Alfredsson, B.W. Ninham, R. Giorgi, P. Lo Nostro, P. Baglioni, Nanotubes from a Vitamin C-Based Bolaamphiphile, Journal of the American Chemical Society, 128 (2006) 7209-7214.
    [169] L. Lu, A. Kobayashi, K. Tawa, Y. Ozaki, Silver Nanoplates with Special Shapes:  Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties, Chemistry of Materials, 18 (2006) 4894-4901.
    [170] G.S. Métraux, Y.C. Cao, R. Jin, C.A. Mirkin, Triangular Nanoframes Made of Gold and Silver, Nano Letters, 3 (2003) 519-522.
    [171] Y. Wang, P.H.C. Camargo, S.E. Skrabalak, H. Gu, Y. Xia, A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver, Langmuir, 24 (2008) 12042-12046.
    [172] M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, Thermal stability of vitamin C: Thermogravimetric analysis and use of total ion monitoring chromatograms, Journal of Pharmaceutical and Biomedical Analysis, 59 (2012) 190-193.
    [173] S.P. Gladkikh, Ascorbic acid and methods of increasing its stability in drugs, Technology, (1971) 699-705.
    [174] S. Yang, Y. Song, P.Y. Zavalij, M. Stanley Whittingham, Reactivity, stability and electrochemical behavior of lithium iron phosphates, Electrochemistry Communications, 4 (2002) 239-244.
    [175] D. Jugović, M. Mitrić, M. Kuzmanović, N. Cvjetićanin, S. Škapin, B. Cekić, V. Ivanovski, D. Uskoković, Preparation of LiFePO4/C composites by co-precipitation in molten stearic acid, Journal of Power Sources, 196 (2011) 4613-4618.
    [176] Y. Xu, Y. Lu, L. Yan, Z. Yang, R. Yang, Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials, Journal of Power Sources, 160 (2006) 570-576.
    [177] Z.-y. Chen, W. Zhu, H.-l. Zhu, J.-l. Zhang, Q.-f. Li, Electrochemical performances of LiFePO4/C composites prepared by molten salt method, Transactions of Nonferrous Metals Society of China, 20 (2010) 809-813.

    下載圖示 校內:2022-11-25公開
    校外:2022-11-25公開
    QR CODE