| 研究生: |
劉倩妏 Liu, Chien-Wen |
|---|---|
| 論文名稱: |
雙十六碳鏈離子對雙親分子/帶負電脂質/膽固醇混合Langmuir單分子層行為的探討 Study on Langmuir monolayer behavior of mixed dihexadecyl-chain ion pair amphiphile/negatively charged lipid/cholesterol system |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 氣/液界面 、離子對雙親分子 、Langmuir單分子層 、混合單分子層 |
| 外文關鍵詞: | air/liquid interface, ion pair amphiphile, Langmuir monolayer, mixed monolayer |
| 相關次數: | 點閱:94 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由表面壓-面積及表面電位-面積等溫線、鬆弛曲線和熱力學分析,探討添加雙十六碳鏈磷酸鹽(dihexadecyl phosphate, DHDP)及膽固醇對於不同碳鏈長度之離子對雙親分子(ion pair amphiphile, IPA),hexadecyltrimethylammonium-hexadecylsulfate(HTMA-HS)和hexadecyltrimethylammonium-dodecylsulfate(HTMA-DS)Langmuir單分子層行為的影響。
對兩種IPA/DHDP混合單分子層而言,等溫線與熱力學分析顯示DHDP具有與膽固醇相似的凝縮效應(condensing effect),而此效應在HTMA-DS/DHDP混合單分子層中較為顯著。由單分子層鬆弛實驗可知,隨著DHDP添加量的增加,混合單分子層在氣/液界面上的穩定性越高。在兩種IPA/膽固醇混合單分子層中,由等溫線可知,當IPA單分子層處於排列鬆散的狀態下,膽固醇的凝縮效應相當明顯,但若IPA單分子層中分子的排列較緊密,其效應則不顯著,甚至使得混合單分子層的凝縮相出現相轉行為。但整體來說,膽固醇的添加有助於增加兩種IPA/膽固醇混合單分子層的分子間交互作用。在DHDP/膽固醇混合單分子層中,由熱力學分析可知,DHDP和膽固醇分子間的交互作用略大於DHDP與膽固醇自身分子間的作用,在此混合單分子層系統中亦在凝縮相發現相轉行為。由鬆弛實驗可知,膽固醇的添加因發生成核成長現象,使之無助甚至破壞兩種IPA或DHDP單分子層在表面壓為30 mN/m時的穩定性。
就添加膽固醇對兩種IPA/DHDP混合單分子層行為的影響而言,膽固醇的添加會使得凝縮單分子層於高表面壓時發生重組行為,並造成分子排列較緊密的混合單分子層中的分子碳氫鏈傾向於非直立排列,但對於分子排列較鬆散的混合單分子層中的分子碳氫鏈傾向於直立排列。整體而言,膽固醇的添加會增加兩種IPA/DHDP混合單分子層的分子間作用。由鬆弛行為可知,在表面壓30 mN/m的狀態下,膽固醇的添加皆使得兩種IPA/DHDP混合單分子層的穩定性下降。
若將三成分系統之混合單分子層的分析結果與相同比例材料所製備出之陰陽離子型液胞(catanionic vesicle)的穩定天數比較,當DHDP或膽固醇的含量增加時,皆有助於增加以兩種IPA為主體材料之液胞的物理穩定性,應該是因為DHDP或膽固醇皆會增加分子之間的交互作用所致。然而在HTMA-HS/DHDP混合比例為7/3的三成分系統當中,其液胞的物理穩定性略低於HTMA-DS/DHDP混合比例為7/3的系統,推測與混合單分子層的等溫線中所發現的凝縮相之相轉行為有關。
This study investigated the effects of added dihexadecyl phosphate (DHDP) and cholesterol on the monolayer behavior of ion pair amphiphiles (IPAs) with different alkyl chain lengths, hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS) and hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), by analyzing molecular interaction and mixed monolayer stability with surface pressure-area isotherms, surface potential-area isotherms, and relaxation curves. The isotherms indicated that DHDP and cholesterol possessed the condensing effect on the mixed monolayers. In addition, at a surface pressure of 30 mN/m, the stability of the mixed monolayers became higher with DHDP addition, but became lower with the cholesterol addition. Moreover, there was a phase transition in the solid phase region of the condensed monolayers in the presence of cholesterol. It was suggested that the molecules rearranged at high surface pressures with cholesterol addition. It was noted that the tilt angle of the molecular alkyl chains was increased in the condensed monolayers and was decreased in the expanded monolayers. The physical stability of catanionic vesicles fabricated from the IPAs was improved with the addition of DHDP and cholesterol, which could be attributed to the enhanced interaction between the molecules. However, when the mole ratio of IPAs/DHDP was 7/3, the physical stability was poorer in HTMA-HS-formed vesicles than in HTMA-DS-formed vesicles, which might be related to the phase transition characteristic observed for the condensed monolayers.
Aida, T., Yamamoto, T., Ou-Yang, W., Manaka, T. and Iwamoto, M., “Study of domain shapes and orientational structure of phospholipid monolayers using Maxwell displacement current and Brewster angle microscopy,” Japanese Journal of Applied Physics, 47, (1), 411-415, 2008.
Bernsdorff, C. and Winter, R., “Differential properties of the sterols cholesterol, ergosterol, beta-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order,” Journal of Physical Chemistry B, 107, (38), 10658-10664, 2003.
Bhattacharya, S. and Haldar, S., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,” Biochimica et Biophysica Acta-Biomembranes, 1467, (1), 39-53, 2000.
Bonn, M., Roke, S., Berg, O., Juurlink, L. B. F., Stamouli, A. and Muller, M., “A molecular view of cholesterol-induced condensation in a lipid monolayer,” Journal of Physical Chemistry B, 108, (50), 19083-19085, 2004.
Bramer, T., Dew, N. and Edsman, K., “Pharmaceutical applications for catanionic mixtures,” Journal of Pharmacy and Pharmacology, 59, (10), 1319-1334, 2007.
Chattoraj, D. K. and Birdi, K., “Adsorption and the Gibbs surface excess,” Plenum Press, New York, 1984.
Claesson, P., Carmonaribeiro, A. M. and Kurihara, K., “Dihexadecyl phosphate monolayers - intralayer and interlayer interactions,” Journal of Physical Chemistry, 93, (2), 917-922, 1989.
Demchak, R. J. and Fort, T., “Surface dipole-moments of close-packed un-ionized monolayers at air-water-interface,” Journal of Colloid and Interface Science, 46, (2), 191-202, 1974.
deMeijere, K., Brezesinski, G. and Mohwald, H., “Polyelectrolyte coupling to a charged lipid monolayer,” Macromolecules, 30, (8), 2337-2342, 1997.
Dynarowicz-Latka, P., Dhanabalan, A. and Oliveira, O. N., “Modern physicochemical research on Langmuir monolayers,” Advances in Colloid and Interface Science, 91, (2), 221-293, 2001.
Dynarowicz-Łątka, P. and Kita, K., “Molecular interaction in mixed monolayers at the air/water interface,” Advances in Colloid and Interface Science, 79, (1), 1-17, 1999.
Fuller, G. M. and Shields, D., “Molecular basis of medical cell biology,” Appleton & Lange, Stamford Connecticut, 1998.
Gershfeld, N. and Pagano, R., “Physical chemistry of lipid films at the air-water interface. III. Condensing effect of cholesterol. Critical examination of mixed-film studies,” The Journal of Physical Chemistry, 76, (9), 1244-1249, 1972.
Goodrich, F. C., “Proceedings of the second international congress of surface activity,” Butterworths Press, London, 1957.
Gunarsa, C. A., “含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維他命E包覆效率,” 國立成功大學化學工程學系碩士論文, 2010
Hac-Wydro, K., Wydro, P. and Dynarowicz-Latka, P., “Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols - a monolayer study,” Journal of Colloid and Interface Science, 286, (2), 504-510, 2005.
Holmberg, K., “Handbook of applied surface and colloid chemistry,” JohnWiley and Sons, England, 45-54, 2002.
Johann, R., Vollhardt, D. and Mohwald, H., “Faceting of monolayer domains,” Colloid and Polymer Science, 278, (2), 104-113, 2000.
Kaganer, V. M., Mohwald, H. and Dutta, P., “Structure and phase transitions in Langmuir monolayers,” Reviews of Modern Physics, 71, (3), 779-819, 1999.
Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, 245, (4924), 1371-1374, 1989.
Kuo, A. T. and Chang, C. H., “Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study,” Langmuir, 30, (1), 55-62, 2014.
Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112, 1997.
Lasic, D. D. and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Current Opinion in Solid State & Materials Science, 1, (3), 392-400, 1996.
Leathes, J. B., “Role of fats in vital phenomena,” Lancet, 1, 853-856, 1925.
Leonenko, Z., Rodenstein, M., Dohner, J., Eng, L. M. and Amrein, M., “Electrical surface potential of pulmonary surfactant,” Langmuir, 22, (24), 10135-10139, 2006.
Lheveder, C., Meunier, J. and Hónon, S., “Physical chemistry of biological interfaces,” Marcel Dekker, New York, 2000.
MacDonald, R. C., “Vesicles,” CRC Press, New York, 1996.
Manosroi, A., Wongtrakul, P., Manosroi, J., Sakai, H., Sugawara, F., Yuasa, M. and Abe, M., “Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol,” Colloids and Surfaces B-Biointerfaces, 30, (1-2), 129-138, 2003.
Marques, E. F., Regev, O., Khan, A. and Lindman, B., “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science, 100, 83-104, 2003.
Marsh, D. and Smith, I. C., “An interacting spin label study of the fluidizing and condensing effects of cholesterol on lecithin bilayers,” Biochimica et Biophysica Acta-Biomembranes, 298, (2), 133-144, 1973.
McConnell, H. M. and DeKoker, R., “Equilibrium thermodynamics of lipid monolayer domains,” Langmuir, 12, (20), 4897-4904, 1996.
McConnell, H. M. and Radhakrishnan, A., “Condensed complexes of cholesterol and phospholipids,” Biochimica et Biophysica Acta-Biomembranes, 1610, (2), 159-173, 2003.
Montanha, E. A., Pavinatto, F. J., Caseli, L., Kaczmarek, O., Liebscher, J., Huster, D. and Oliveira, O. N., “Properties of lipophilic nucleoside monolayers at the air-water interface,” Colloids and Surfaces B-Biointerfaces, 77, (2), 161-165, 2010.
Myers, D., “Surfaces, interfaces and colloids: principles and applications,” Wiley-Vch, New York, 1999.
Nakahara, H., Nakamura, S., Kawasaki, H. and Shibata, O., “Properties of two-component Langmuir monolayer of single chain perfluorinated carboxylic acids with dipalmitoylphosphatidylcholine (DPPC),” Colloids and Surfaces B-Biointerfaces, 41, (4), 285-298, 2005.
New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
Oliveira, O. N. and Bonardi, C., “The surface potential of Langmuir monolayers revisited,” Langmuir, 13, (22), 5920-5924, 1997.
Paiva, D., Brezesinski, G., Pereira, M. D. and Rocha, S., “Langmuir monolayers of monocationic lipid mixed with cholesterol or fluorocholesterol: DNA adsorption studies,” Langmuir, 29, (6), 1920-1925, 2013.
Penacorada, F., Reiche, J., Katholy, S., Brehmer, L. and Rodriguezmendez, M. L., “Monolayers and multilayers of uranyl arachidate .1. Study of the interaction of dissolved uranyl ions with arachidic acid langmuir monolayers,” Langmuir, 11, (10), 4025-4030, 1995.
Peters, G. H., Toxvaerd, S., Olsen, O. H. and Svendsen, A., “Modeling of complex biological-systems .2. Effect of chain-length on the phase-transitions observed in diglyceride monolayers,” Langmuir, 11, (10), 4072-4081, 1995.
Regev, O. and Khan, A., “Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems,” Journal of Colloid and Interface Science, 182, (1), 95-109, 1996.
Rigoletto, T. D., Zaniquelli, M. E. D., Santana, M. H. A. and de la Torre, L. G., “Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers,” Colloids and Surfaces B-Biointerfaces, 83, (2), 260-269, 2011.
Rosen, M. J. and Kunjappu, T., “Surfactants and interfacial phenomena,” Wiley, 2012.
Seoane, R., Minones, J., Conde, O., Minones, J., Casas, M. and Iribarnegaray, E., “Thermodynamic and Brewster angle microscopy studies of fatty acid/cholesterol mixtures at the air/water interface,” Journal of Physical Chemistry B, 104, (32), 7735-7744, 2000.
Shah, D. O. and Schulman, J. H., “Binding of metal ions to monolayers of lecithins plasmalogen cardiolipin and dicetyl phosphate,” Journal of Lipid Research, 6, (3), 341-349, 1965.
Smiley, B. L. and Richmond, G. L., “Alkyl chain ordering of asymmetric phosphatidylcholines adsorbed at a liquid-liquid interface,” Journal of Physical Chemistry B, 103, (4), 653-659, 1999.
Smiley, B. L. and Richmond, G. L., “Assembly of long chain phosphatidylcholines at a liquid-liquid interface,” Biopolymers, 57, (2), 117-125, 2000.
Subramaniam, S. and McConnell, H. M., “Critical mixing in monolayer mixtures of phospholipid and cholesterol,” Journal of Physical Chemistry, 91, (7), 1715-1718, 1987.
Taylor, D. M., “Developments in the theoretical modelling and experimental measurement of the surface potential of condensed monolayers,” Advances in Colloid and Interface Science, 87, (2-3), 183-203, 2000.
Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, 93, (1-3), 115-134, 2001.
Vogel, V. and Mobius, D., “Local surface-potentials and electric-dipole moments of lipid monolayers - contributions of the water lipid and the lipid air interfaces,” Journal of Colloid and Interface Science, 126, (2), 408-420, 1988.
Vollhardt, D. and Fainerman, V. B., “Progress in characterization of Langmuir monolayers by consideration of compressibility,” Advances in Colloid and Interface Science, 127, (2), 83-97, 2006.
Vollhardt, D. and Retter, U., “Nucleation in insoluble monolayers .1. Nucleation and growth-model for relaxation of metastable monolayers,” Journal of Physical Chemistry, 95, (9), 3723-3727, 1991.
Watry, M. R., Tarbuck, T. L. and Richmond, G. I., “Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface,” Journal of Physical Chemistry B, 107, (2), 512-518, 2003.
Winter, R. and Jeworrek, C., “Effect of pressure on membranes,” Soft Matter, 5, (17), 3157-3173, 2009.
Yatcilla, M. T., Herrington, K. L., Brasher, L. L., Kaler, E. W., Chiruvolu, S. and Zasadzinski, J. A., “Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS),” Journal of Physical Chemistry, 100, (14), 5874-5879, 1996.
Yeagle, P. L., “Cholesterol and the cell membrane,” Biochimica et Biophysica Acta-Reviews on Biomembranes, 822, (3), 267-287, 1985.
Zhao, L. Y. and Feng, S. S., “Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air-water interface,” Journal of Colloid and Interface Science, 300, (1), 314-326, 2006.
Zhou, N. F. and Neuman, R. D., “Dihexadecyl phosphate monolayers at the heptane water interface - model interfacial system for solvent-extraction studies,” Colloids and Surfaces, 63, (3-4), 201-207, 1992.
王鈺婷, 國立成功大學化學工程學系碩士論文, 2015
李威達, “陰陽離子型液胞組成材料之混合單分子層中分子作用的探討,” 國立成功大學化學工程學系博士論文, 2008
吳靜昀, “雙十六碳鏈離子對雙親分子/添加劑形成之液胞及Langmuir單分子層的特性分析,” 國立成功大學化學工程學系碩士論文, 2013
林冠豪, “帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系碩士論文, 2004
周廷濱, “以紅外光譜法探討碳氫鏈長度對 離子對雙親分子/雙碳鏈陽離子型界面活性劑 混合Langmuir單分子層分子排列特性的影響” 國立成功大學化學工程學系碩士論文, 2014
周宗翰, “含DPPC之混合單分子層的分子間交互作用,” 國立成功大學化學工程學系碩士論, 1999
嚴慧婷, “膽固醇的添加對於離子對雙親分子/雙十六碳鏈陰離子型脂質混合Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2010