簡易檢索 / 詳目顯示

研究生: 林俊豪
Lin, Jyun-Hao
論文名稱: 利用有機金屬化學氣相沉積法磊晶成長高品質氮化鎵於矽基板
The Growth of High Quality GaN on Silicon by MOCVD
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 83
中文關鍵詞: 氮化鎵氮化鋁氮化鋁鎵超晶格
外文關鍵詞: GaN, Silicon, AlN, AlGaN, Superlattice
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的在於探討氮化鎵化合物成長於矽(111)基板時的影響因素,並且運用了許多方法去更一步的提升氮化鎵的品質。因此,我們成功的使用有機金屬化學氣相沉積法成長高品質氮化鎵於矽基板上並製作出光檢測器。
    首先,我們探討高溫氮化鋁緩衝層的影響,藉由改變TMAl預沉積時間、氮化鋁的成長溫度、成長厚度、五族氮與三族鋁的比例以及氮化鋁的成長速率,我們期望可以得到最佳的結晶品質以及光學特性。在此,我們利用高解析X光射線繞射儀、光致發光量測系統及原子力顯微鏡等量測設備分析成長材料的品質,透過實驗進行品質改善,我們成功的成長高品質氮化鎵於矽基板上。
    之後,我們增加氮化鎵磊晶成長的厚度,以期望得到更好特性,但是磊晶層產生裂痕的問題便隨之而來。為了解決這個問題,我們使用氮化鋁鎵及低溫氮化鋁插入層。從實驗中,我們獲知線性漸變的氮化鋁層以及720°C的低溫氮化鋁層可以有效的提升結晶品質也可以減少產生裂痕的密度。
    最後,我們使用氮化鎵/氮化鋁鎵超晶格結構來獲得更佳且沒產生裂痕的結晶品質。超晶格的對數為20對,氮化鎵層及氮化鋁鎵層的成長時間分別為10秒與5秒。在如此的成長條件下,我們得到最佳的結晶品質且氮化鎵薄膜沒有產生裂痕,且從穿透式電子顯微鏡觀察得知超晶格結構可以有效的侷限晶格差排的問題以及補償成長時的應力。
    之後使用此最佳品質的氮化鎵薄膜來製作光檢測器。從量測結果中,此元件有著很小的暗電流,僅3.01*10-11安培,且此元件的光暗電流比以及紫外光對可見光的比值在10伏特時分別為9.42*104及1420。此結果顯示我們的元件擁有非常良好的特性。
    在此論文中,我們已經成功的成長高品質的氮化鎵於矽(111)基板上,之後我們將測試參雜濃度以期望製作出高亮度及低順向偏壓的垂直式發光二極體。此外,為了解決極化場所造成的問題,我們將成長半極性氮化鎵於矽(113)基板上。

    In this thesis, the main purpose is to investigate the factors that inference the quality of GaN grown on Si (111) substrate. And we use many methods to improve the quality. Consequently, the growth of high quality GaN on Si and fabrication of GaN-based photodiodes are demonstrated successfully by metalorganic chemical vapor deposition (MOCVD).
    First, we investigated the effects of high temperature AlN (HT-AlN) buffer layer. The epitaxial parameters such as pre-deposition time of TMAl, growth temperature, thickness, N/Al ratio and AlN growth rate were varied in order to get better crystal and optical quality. We found that proper growth conditions could enhance the quality form XRD, PL and AFM measurements. Through experiments, we successfully grew the high quality GaN on Si.
    We increased the thickness of GaN to get a better property. But encounter the series crack problem simultaneously. For the purpose of solving the crack problem, we inserted AlGaN and low temperature AlN (LT-AlN) interlayers. We found that with linear-graded AlGaN interlayer and 720°C LT-AlN interlayer can not only effectively enhance the quality but also reduce the crack density.
    Final, we inserted the GaN/AlGaN superlattice structure to get a higher GaN quality without crack. The number of pairs of superlattice is 20 pairs. With growth time of GaN and Al0.3GaN0.7 are 10 s and 5 s, respectively. Under these growth conditions, we got the bestquality and crack free GaN film from XRD, PL, AFM and SEM measurements. And from TEM image, we found that superlattice structure can not only block the dislocations but also balance the strain.
    We also use this GaN bulk with a best quality to fabricate the photodiodes. The dark current of this PD was small as 3.01*10-11 A. We also found that photo to dark current ratio and UV / visible rejection ratio @ 10V are about 9.42*104 and 1420, respectively. These results reveal that we have fabricated high performance device.
    In this study, we have successfully grown high quality GaN bulk on Si (111) substrate. Next, we will adjust the doping concentration to fabricate GaN based vertical LED/LDs with high brightness and low forward voltage in near future. Besides, in order to solve the problem caused by strong piezoelectric and/or spontaneous polarization fields, we will grow semi-polar GaN on Si (113) substrate in near future.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgement IV Contents V Table captions VIII Figure captions X Chapter 1 Introduction 1.1 Motivation of GaN grown on Si substrate 1 1.2 Overview of GaN / Si heteroepitaxy 2 1.3 Organization of this thesis 3 Bibliography-Chapter 1 8 Chapter 2 Experimental Theory and Relevant Equipment 2.1 Theory of photodetectors 11 2.1.1 Theory of MSM photodetectors 12 2.1.2 Spectral response 12 2.2 Equipment 13 2.2.1 Metalorganic chemical vapor deposition (MOCVD) 13 2.2.2 High Resolution X-Ray Diffraction (HRXRD) 14 2.2.3 Atomic Force Microscopy (AFM) 14 2.2.4 Photoluminescence (PL) 15 2.2.5 Spectral response and I-V measurement system 16 Bibliography-Chapter 2 21 Chapter 3 GaN Epitaxial Grown on Si (111) Substrate with HT-AlN Buffer Layer 3.1 Growth conditions of HT-AlN buffer layer 22 3.1.1 Experimental detail 22 3.1.2 Pre-deposition time of TMAl 23 3.1.3 Growth temperature of AlN 24 3.1.4 Thickness of AlN 25 3.1.5 Ratio of N/Al 26 3.1.6 Growth rate of AlN 27 3.1.7 Summary 28 3.2 Prepared GaN-based photodiodes 28 3.2.1 Fabrication of Metal Semiconductor Metal (MSM)devices 28 3.2.2 Device performance of GaN-based MSM photodiodes 29 3.2.3 Summary 29 Bibliography-Chapter 3 42 Chapter 4 GaN Epitaxial Grown on Si (111) Substrate with AlGaN and LT-AlN interlayer 4.1 Thickness of GaN Epitaxial Layer 44 4.1.1 Experimental detail 44 4.1.2 Thickness of GaN layer 45 4.1.3 Summary 45 4.2 Growth of AlGaN and LT-AlN interlayer 46 4.2.1 Experimental detail 46 4.2.2 AlGaN interlayer 46 4.2.3 LT-AlN interlayer 47 4.2.4 Summary 48 4.3 Prepared GaN-based photodiodes 49 4.3.1 Fabrication of Metal Semiconductor Metal (MSM)devices 49 4.3.2 Device performance of GaN-based MSM photodiodes 49 4.3.3 Summary 50 Bibliography-Chapter 4 63 Chapter 5 GaN Epitaxial Grown on Si (111) Substrate with GaN/AlGaN Superlattice 5.1 Growth condition of GaN/AlGaN superlattice 64 5.1.1 Experimental detail 64 5.1.2 Thickness of AlGaN and GaN layers 65 5.1.3 The pairs of superlattice 65 5.1.4 Summary 66 5.2 Prepared GaN-based photodiodes 67 5.2.1 Fabrication of Metal Semiconductor Metal (MSM) devices 67 5.2.2 Device performance of GaN-based MSM photodiodes 67 5.2.3 Summary 68 Bibliography-Chapter 5 77 Chapter 6 Conclusion and Future Prospects 6.1 Conclusion 78 6.2 Future 79 Bibliography-Chapter 6 83

    Bibliography-Chapter 1

    [1] S. Nakamura and G. Fasol, “The blue laser diode: GaN based light emitters and lasers”, Springer Berlin, 1997.
    [2] Y. Lu, X. Liu, D. Lu, H. Yuan, Z. Chen, T. Fan, Y. Li, P. Han, X. Wang and D. Wang, “Investigation of GaN layer grown on Si (1 1 1) substrate using an ultrathin AlN wetting layer”, Journal of crystal growth 236, 77 ( 2002).
    [3] Y. Kato, S. Kitamura, K. Hiramatsu and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy”, Journal of Crystal Growth 144, 133 (1994).
    [4] A. Sakai, H. Sunakawa and A. Usui, ” Defect structure in selectively grown GaN films with low threading dislocation density ”, Appl. Phys. Lett. 71, 2259 (1997).
    [5] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, Journal of Crystal Growth 221, 316 (2000).
    [6] A. Nishikawa, K. Kumakura, T. Akasaka, and T.MaKimoto, “p-InGaN/n-GaN Vertical Conducting Diodes on n+-SiC Substrate for High Power Electronic Device Applications” , Jpn. J. Appl. Phys. 45, 3387 (2006).
    [7] K. Kobashi, “Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth”, 2005.
    [8] E. Butter, G. Fitzl, D. Hirsch, G. Leonhardt, W. Seifert and G. Preschel, “The deposition of group III nitrides on silicon substrates”, Thin Solid Films 59, 25 (1979).
    [9] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo and M. Umeno, “Thermal stability of GaN on (1 1 1) Si substrate”, Journal of Crystal Growth 189, 178 (1998).
    [10] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer”, Journal of Crystal Growth 128, 391 (1993).
    [11] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken and A. Krost, “Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness”, Jpn. J. Appl. Phys. 39, 1183 (2000).
    [12] A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking”, Appl. Phys. Lett. 80, 3670 (2002).
    [13] J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers”, Appl. Phys. Lett. 81, 2722 (2002).
    [14] A. Dadgar, M. Poschenrieder, A. Reiher, J. Bläsing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez and A. Krost, “Reduction of stress at the initial stages of GaN growth on Si(111)”, Appl. Phys. Lett. 82, 28 (2002).
    [15] K. Y. Zang, Y. D. Wang, L. S. Wang, S. Y. Chow, and S. J. Chua, “Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111)”, J. Appl. Phys.101, 093502 (2007).
    [16] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu, “Defect structure in selective area growth GaN pyramid on (111)Si substrate”, Appl. Phys. Lett. 76, 2071 (2000).
    [17] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates”, Appl. Phys. Lett.78, 727 (2000).
    [18] T. M. Katona, M. D. Craven, P. T. Fini, J. S. Speck, and S. P. DenBaars, “Observation of crystallographic wing tilt in cantilever epitaxy of GaN on silicon carbide and silicon (111) substrates”, Appl. Phys. Lett.79, 2907 (2001).
    [19] A. Dadgar, A. Alam, T. Riemann, J. Bläsing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen and A. Krost, “Crack-Free InGaN/GaN Light Emitters on Si(111)”, phys. stat. sol. 188, 155 (2001).
    [20] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, “Growth of GaN free from cracks on a (111) Si substrate by selective metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. 80, 303 (2001).
    [21] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353 (1986).
    [22] Mizuho Morita, Seiji Isogai, Nobuhiro Shimizu, Kazuo Tsubouchi and Nobuo Mikoshiba, “Aluminum Nitride Epitaxially Grown on Silicon: Orientation Relationships”, Jpn. J. Appl. Phys. 20, 173 (1981).
    [23] Alois Krost, Armin Dadgar, “GaN-based optoelectronics on silicon substrates”, Materials Science and Engineering B 93, 77 (2002).

    Bibliography-Chapter 2

    [1] H. Morkoc, “Nitride Semiconductor and devices”, Springer, 2001.
    [2] S. M. Sze, “Semiconductor devices physics and technology”, John Wiley and Sons, 2002.
    [3] H. Norde, “A modified forword I-V plot for Schottky diodes with high series resistance”, Journal of Applied Physics 50, 5025 (1979).
    [4] D. K. Bowen, B. K. Tanner, “High Resolution X-ray Diffraction and Topography”, CRC, 1998.
    [5] D. K. Schroder, “Semiconductor Material and Device Characterization”, Wiley-IEEE Press, 2006.
    [6] Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces”, John Wiley & Sons Ltd, 2000.
    [7] C. H. Wu, “MOVPE Growth of (In)GaNAs and GaInNP for Quantum Well Lasers and Heterojunction Bipolar Transistors”, Ph.D. dissertation, NCKU, 2004.

    Bibliography-Chapter 3

    [1] Y. Lu, X. Liu, D. Lu, H. Yuan, Z. Chen, T. Fan, Y. Li, P. Han, X. Wang and D. Wang, “Investigation of GaN layer grown on Si (1 1 1) substrate using an ultrathin AlN wetting layer”, Journal of crystal growth 236, 77 (2002)
    [2] J. Kim, S. Hong, K. Lim, “Crack formation in GaN on Si(111) substrates grown by MOCVD using HT Al-preseeding and HT AlN buffer layers”, Phys. Status Solidi (c) 7, 2052 (2010).
    [3] J. Cao, S. Li , G. Fan, Y. Zhang, S. Zheng, Y. Yin, J. Huang, J. Su, “The influence of the Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate ”, Journal of Crystal Growth 312, 2044 (2010).
    [4] H. Lahreche, P. Vennegues, O. Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, P. Gibart, “Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si(1 1 1)”, Journal of Crystal Growth 217, 13 (2010).
    [5] Y. Wu, J. Zhu, G. Chen, S. Zhang, D. Jiang, Z. Liu, D. Zhao, H. Wang, Y. Wang and H. Yang, “Influence of AlN buffer layer thickness on structural properties of GaN epilayer grown on Si (111) substrate with AlGaN interlayer”, Chin. Phys. B 19, 036801 (2010).
    [6] J. Yang , S. Kang , D. Dinh , D. Yoon, “Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth”, Thin Solid Films, 517, 5057 (2009).
    [7] W. Luo, X. Wang, L. Guo, H. Xiao, C. Wang, J. Ran and J. Li, “Influence of AlN buffer layer thickness on the properties of GaN epilayer on Si(111) by MOCVD”, Microelectronics Journal 39, 1710 (2008).
    [8] M. Wu, B. Zhang, J. Chen, J. Liu, X. Shen, D. Zhao, J. Zhang, J. Wang, N. Li, R. Jin, J. Zhu and H. Yang, “Effect of the N/Al ratio of AlN buffer on the crystal properties and stress state of GaN film grown on Si(1 1 1) substrate”, Journal of Crystal Growth 331 (2004).
    [9] B. Cleaning, “Wet-Chemical Etching and Cleaning of Silicon”, High Temperature 22401, Virginia Semiconductor Inc (2003).

    Bibliography-Chapter 4

    [1] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen, and G. Borghs, “Flat GaN Epitaxial Layers Grown on Si(111) by Metalorganic Vapor Phase Epitaxy Using Step-Graded AlGaN Intermediate Layers”, Journal of Electronic Materials 35, 592 (2005).
    [2] C.C. Huanga, S.J. Changa, R.W. Chuanga, J.C. Linb, Y.C. Chengb, W.J. Lin, “GaN grown on Si(1 1 1) with step-graded AlGaN intermediate layers”, Applied Surface Science 256, 6367 (2010).
    [3] Y. Wu , J. Zhu, D. Zhao, Z. Liu, D. Jiang, S. Zhang, Y. Wang, H. Wang, G. Chen and H. Yang, “The effect of single AlGaN interlayer on the structural properties of GaN epilayers grown on Si (111) substrate”, Chinese Physics B 18, 4413 (2009).
    [4] E. Arslan, M. Ozturk, A. Teke, S. Ozcelik, E. Ozbay, “Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD”, Journal of Physics D : Applied Physics 41, 155317 (2008).
    [5] A. Reiher, J. Blasing, A. Dadgar, A. Diez, A. Krost, “Efficient stress relief in GaNheteroepitaxy on Si(1 1 1) using low-temperature AlN interlayers”, Journal of Crystal Growth 248, 563 (2003).

    Bibliography-Chapter 5

    [1] S. Jang, C. Lee, “High-quality GaN/Si(1 1 1) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD”, Journal of Crystal Growth 253, 64 (2003).
    [2] Z. Liu, X. Wang, J. Wang, G. Hu, L. Guo and J. Li, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrate”, Chinese Physics 16, 1467 (2007).
    [3] G. Wu, C. Tsai, N. Chen, and P. Chang, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates ”, Cryst. Res. Technol 42, 1276 (2007).
    [4] A.D Bykhovski, B.L Gelmont and M.S Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices”, Journal of Applied Physics 81, 6332 (1997).

    Bibliography-Chapter 6

    [1] S. Chang , S. Chang , C. Lu , Z. Chiou ,R. Chuang , H. Lin, “Low-frequency noise characteristics of GaN-based UV photodiodes with AlN/GaN buffer layers prepared on Si substrates”, Journal of Crystal Growth 311, 3003 (2009).
    [2] C.Chen, K.Wang, S.Tsai, H.Chien, and S.Wu, “Nitride-Based Metal Semiconductor Metal Photodetectors with InN/GaN Multiple Nucleation Layers”, Japanese Journal of Applied Physics 49, 04DG06 (2010).
    [3] Y. K. Su, S. J. Chang, Y. D. Jhou, S. L. Wu, and C. H. Liu, “GaN Metal Semiconductor Metal Photodetectors With SiN/GaN Nucleation Layer”, IEEE SENSORS JOURNAL 8, 1693 (2008).
    [4] Y.D. Jhou, C.H. Chen, S.J. Chang, Y.K. Su, P.C. Changc, P.C. Chen, H. Hung, C.L. Yu, S.M. Wang, M.H. Wu, “GaN MSM photodetectors with photo-CVD annealed Ni/Au electrodes”, Microelectronics Journal 37, 328 (2005).
    [5] Feng Xie, Hai Lu , Xiangqian Xiu, Dunjun Chen, Ping Han, Rong Zhang, Youdou Zheng, “Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate”, Solid-State Electronics 57, 39 (2011).
    [6] T. Tanikawa, T. Hikosaka, Y. Honda, M. Yamaguchi, and N. Sawaki, “Growth of semi-polar (11-22) GaN on a (113)Si substrate by selective MOVPE”, Physica Status Solidi (c) 5, 2966 (2008).
    [7] T. Murase, T. Tanikawa, Y. Honda, M. Yamaguchi, H. Amano and N. Sawaki, “Drastic Reduction of Dislocation Density in Semipolar (11-22) GaN Stripe Crystal on Si Substrate by Dual Selective Metal–Organic Vapor Phase Epitaxy”, Japanese Journal of Applied Physics 50, 01AD04 (2011).
    [8] T. Tanikawa , Y. Kagohashi, Y. Honda , M. Yamaguchi, N. Sawaki, “Reduction of dislocations in a (112-2) GaN grown by selective MOVPE on (113) Si”, Journal of Crystal Growth 311, 2879 (2009).

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE