簡易檢索 / 詳目顯示

研究生: 鍾詩緯
Chung, Shih-Wei
論文名稱: 窄頻電力線通訊系統之脈衝雜訊抑制與改錯碼應用
Impulse Noise Mitigation and Error-Correcting-Code Application for Narrow Band Power Line Communication System
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 電力線通訊窄頻電力線通訊脈衝雜訊改錯碼
外文關鍵詞: PLC, Narrowband PLC, Impulse noise, Error-correcting code
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力線通訊系統是利用既有的配電網路來做傳輸,因此不需要再額外架設基礎設施。電力線原本的用途是用作電力輸送,因此在利用電力線通訊的過程中會遭受到多種干擾,而在窄頻電力線通訊系統中又以出現頻率不規律、會在短時間內產生大能量的脈衝雜訊影響最為嚴重。
    本論文研究依據窄頻電力線G.hnem(Gigabit Home Networking for Energy Management)標準規格,在此標準使用的錯誤更正碼為卷積碼(Convolutional code)和里德-所羅門碼(Reed-solomon code)所組成的鏈接碼,此鏈接碼能同時擁有這兩種碼的特性。在窄頻電力線通訊系統中,除了固定的背景雜訊外,還存在著許多的雜訊干擾(如:脈衝雜訊),會使系統的解碼能力降低。本論文將專注在分析如何降低脈衝雜訊對於系統的影響。利用不同偵測脈衝雜訊的方法,找到脈衝雜訊在系統中可能發生的數量,並將這個資訊代入到系統卷積碼的解碼過程中,藉此來改善解碼的可靠度並且提升系統整體性能。

    Power Line Communication (PLC) system does not need additional cabling infrastructure because power line has been widely available. However, because power line is designed for power transmission, it suffers from various interferences during data communication. The impulse noise, which generates large energy in a short time, is the most serious impact in the PLC system.

    This thesis is devoted to study the system design to reduce the impulse-noise impact over narrowband PLC system based on G.hnem (Gigabit Home Networking for Energy Management) standard. The G.hnem standard adopts the concatenated code, which composes of Reed Solomon code and convolutional code, for error-correction. This thesis first review various schemes to detect the impulse noise. Then, we propose a novel system design, which modifies the metrics of the convolutional decoder with the information of noise-power change due to the impulse noise detection, to improve the system performance.

    摘要 II Abstract XVIII 誌謝 XIX 目錄 XX 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 電力線通訊簡介 1 1.1 論文架構 3 第二章 窄頻電力線通訊G.hnem標準介紹 4 2.1 窄頻電力線G.hnem系統之工作頻帶 4 2.2 窄頻電力線G.hnem系統架構圖 5 2.3 窄頻電力線G.hnem系統參數 6 2.4 窄頻電力線G.hnem系統方塊介紹 7 2.4.1 交錯器(Interleaver) 7 2.4.2 頻率上偏移(Frequency up-shift) 9 2.4.3 頻率下偏移(Frequency down-shift) 12 第三章 電力線通道模型 14 3.1 多重路徑通道模型 16 3.2 脈衝雜訊模型 17 3.2.1 無記憶性脈衝雜訊模型 18 3.2.2 有記憶性脈衝雜訊模型 19 第四章 脈衝雜訊之偵測與處理 24 4.1 脈衝雜訊處理技術回顧 24 4.2 脈衝雜訊偵測演算法 26 4.2.1 固定門檻值演算法 26 4.2.2 尼曼-皮爾生(Neyman Pearson, NP)引理演算法 26 4.2.3 事後似然比例演算法 27 4.2.4 三取樣點演算法 28 4.3 試誤法(try-and-error) 32 4.4 模擬結果 42 第五章 改錯碼應用與系統性能提升 60 5.1 鏈接碼(concatenated code)的編解碼方式 60 5.2 偵測處理脈衝雜訊與改錯碼整合 65 第六章 結論 83 參考文獻 84

    [1]G.hnem G.9955 Specification, ITU-T, 2011
    [2]M. Zimmermann and K. Dostert, “A Multipath Model for the Powerline Channel”, IEEE Trans. Comm., vol.50, pp.553-559, April 2002
    [3]D. Middleton, “Non-Gaussian noise models in signal processing for telecommunications: New methods an results for class A and class B noise models,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1129–1149, May 1999.
    [4]C. Soussen, J. Idier, D. Brie, and D. Junbo, “From Bernoulli-Gaussian deconvolution to sparse signal restoration,” IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4572–4584, Oct. 2011.
    [5]D. Fertonani and G. Colavolpe, “On reliable communications over channels impaired by bursty impulse noise,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2024–2030, Jul. 2009.
    [6]G. Ndo, F. Labeau, and M. Kassouf, “A markov-middleton model for bursty impulsive noise: Modeling and receiver design,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2317–2325, Oct 2013.
    [7]M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002.
    [8]K. Saaifan and W. Henkel, “Decision boundary evaluation of optimum and suboptimum detectors in class-a interference,” IEEE Transactions on Communications, vol. 61, no. 1, pp. 197– 205, January 2013.
    [9]N. P. Cowley, A. Payne, and M. Dawkins, “COFDM tuner with impulse noise reduction,” European patent application EP1180851, Feb. 20, 2002, published in Bulletin 2002/08.
    [10]S. V. Zhidkov, ‘Performance analysis and optimization of OFDM receiver with blanking nonlinearity in impulsive noise environment’, IEEE Trans. Veh. Technol., 2006, 55, (1), pp. 234–242
    [11]H. A. Suraweera, C. Chai, J. Shentu, and J. Armstrong, “Analysis of impulse noise mitigation techniques for digital television systems,” in Proc. 8th International OFDM Workshop, Sept. 2003, pp. 172-176.

    [12]S. V. Zhidkov, “Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers,” IEEE Trans. Commun., vol. 56, no. 1, pp. 5–9, Jan. 2008.
    [13] A. Mengi, “On combined coding and modulation,” Ph.D. dissertation, Inst. Experimental Math., Univ. Duisburg-Essen, Essen, Germany,2010.
    [14]Wei-Fan Hsueh, “Mitigation Algorithm for the Memory Impulse Noise in Narrow-band Power Line Communication Systems”,National Cheng Kung University Thesis for Master of Science, Jul. 2017.
    [15]D. Fertonani and G. Colavolpe, “On reliable communications over channels impaired by bursty impulse noise,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2024–2030, Jul. 2009.
    [16]G. Ndo, F. Labeau, and M. Kassouf, “A markov-middleton model for bursty impulsive noise: Modeling and receiver design,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2317–2325, Oct 2013.
    [17]U. Epple, K. Shibli, and M. Schnell, “Investigation of blanking nonlinearity in OFDM systems,” in Proc. 2011 IEEE Int.Commun. Conf., pp. 1–5.
    [18]Fabien Sacuto; Gaetan Ndo; Fabrice Labeau; Basile. L Agba” MAP optimum receiver mitigating correlated impulsive noise”, IEEE Wireless Communications and Networking Conference, Pages: 1 – 6, 2016
    [19]Pablo Torio; Manuel G. Sanchez; “Improving Capability of Detecting Impulsive Noise”, IEEE Transactions on Electromagnetic Compatibility Year: 2013, Volume: 55, Issue: 1 Pages: 66 - 73
    [20]D.-F. Tseng, Y. S. Han, W. H. Mow, L.-C. Chang, and A. J. H. Vinck, “Robust clipping for OFDM transmissions over memoryless impulsive noise channels,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1110–1113, Jul. 2012.
    [21]F. H. Juwono, Q. Guo, D. Huang, Y. Chen, L. Xu, and K. P. Wong, “On the performance of blanking nonlinearity in real-valued OFDM-based PLC,” IEEE Trans. Smart Grid, to be published, doi: 10.1109/TSG.2016.2606643.

    下載圖示 校內:2024-08-03公開
    校外:2024-08-03公開
    QR CODE