簡易檢索 / 詳目顯示

研究生: 楊靜芬
Yang, Jing-Fen
論文名稱: G.hn寬頻電力線通訊系統中脈衝雜訊抑制與改錯碼之應用架構
Application of Impulse Noise Suppression and Error-Correcting-Code for G.hn Broadband Power Line Communication Systems
指導教授: 蘇賜麟
Su, Szu-Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 寬頻電力線通訊多路徑衰減隨機脈衝雜訊改錯碼
外文關鍵詞: Broadband PLC, Multipath fading, Impulse noise, Error-correcting-code
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力線通訊系統可直接銜接既有的配電網路,具有低成本的特色,在智慧電網與家庭網路中扮演重要角色。但此系統遭受多路徑衰減和隨機脈衝雜訊導致系統效能不佳,因此探討與改善上述影響傷害為電力線通訊系統的主要議題。
    依據寬頻電力線G.hn (Gigabit Home Networking)標準規格,此標準使用的錯誤更正編解碼技術為低密度奇偶檢查碼(Low Density Parity Check code)。本論文將模擬分析偵測隨機脈衝雜訊的不同方法,同時整合(理想)通道等化器以降低多路徑衰減的影響;針對有寬度的脈衝雜訊,會搭配交錯器使系統性能提升。然而改錯碼一般是考量在背景雜訊功率固定的通道下,若通道存在額外的雜訊(如脈衝雜訊)影響,則會降低解碼能力。因此將各處理造成的功率變化轉換為有意義的資訊,並引用於LDPC軟式解碼器所需要的對數似然比(Log-Likelihood Ratio, LLR)計算中,藉以提升系統效能。

    Power line communication (PLC) system can exchange information over the existing electrical grid without much extra implementation cost. Such system will play an important role in the future Smart Grid. The multipath fading and random impulse noise (IN) will lead to the poor performance. Therefore, the development of novel technologies to explore the impact of these is the main research topic for the PLC system.
    The study of this thesis is based on the G.hn (Gigabit Home Networking) standard for broadband PLC systems. This standard adopts the low-density-parity-check (LDPC) for error-correction. The thesis analyzes different detection schemes for the random impulse noise by simulations. Also, the system combines the (ideal) channel equalizer to combat multipath channels. Moreover, for the memory(busty) impulse noise, the interleaver is also adopted. Generally, the use of error-correcting code is under the assumption of a fixed background noise channel. If there is additional variant noise, the decoding ability will be reduced. Therefore, we can modify the log-likelihood ratio (LLR) calculation of the LDPC decoder with the information of noise-power change due to the process of IN reduction and equalizer, to improve the system performance.

    摘要 ii 英文延伸摘要 iii Abstract xii 誌謝 xiii 目錄 xiv 表目錄 xvi 圖目錄 xvii 第一章 緒論 1 1.1 電力線通訊簡介 1 1.1.1 窄頻電力線通訊 2 1.1.2 寬頻電力線通訊 3 1.2 論文組織 4 第二章 寬頻電力線通訊G.hn標準介紹 5 2.1 寬頻電力線G.hn系統架構圖 5 2.2 寬頻電力線G.hn系統參數 6 2.3 寬頻電力線G.hn系統方塊介紹 7 2.3.1 頻率上偏移(Frequency up-shift) 7 2.3.2 頻率下偏移(Frequency down-shift) 9 第三章 電力線通道模型 10 3.1 電力線通道簡介 10 3.2 多重路徑通道模型 12 3.3 迫零等化器 13 3.4 脈衝雜訊模型 14 3.4.1 無記憶性脈衝雜訊模型 14 3.4.2 有記憶性脈衝雜訊模型 15 第四章 脈衝雜訊之偵測與處理 19 4.1 脈衝雜訊處理技術回顧 19 4.2 脈衝雜訊偵測演算法 20 4.2.1 固定門檻值演算法 20 4.2.2 尼曼-皮爾生引理演算法 21 4.2.3 迭代演算法 25 4.2.4 模擬結果 27 第五章 改錯碼應用與系統性能提升 32 5.1 低密度奇偶檢查碼 32 5.1.1 G.hn規格標準下LDPC設計 32 5.1.2 LDPC解碼方式 36 5.2 結合脈衝雜訊與通道等化器之改錯碼應用技術 39 5.2.1 偵測處理脈衝雜訊與改錯碼整合 41 5.2.2 通道等化器與改錯碼整合 46 5.2.3 偵測處理脈衝雜訊以及通道等化器與改錯碼整合 46 5.3 交錯器(Interleaver) 52 第六章 結論 57 參考文獻 58

    [1] G.hn G.9960 Specification, ITU-T, 2011
    [2] M. Zimmermann and K. Dostert, “A Multipath Model for the Powerline Channel”, IEEE Trans. Comm., vol.50, pp.553-559, April 2002
    [3] G. Marubayashi and S. Tachikawa, “Spread spectrum transmission on residential power line,” in Proc. IEEE 4th Int. Symp. Spread Spectrum Tech. Applicat. (ISSSTA’96), Mainz, Germany, pp. 1082–1086, Sept. 1996.
    [4] D. Middleton, “Non-Gaussian noise models in signal processing for telecommunications: New methods an results for class A and class B noise models,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1129–1149, May 1999.
    [5] C. Soussen, J. Idier, D. Brie, and D. Junbo, “From Bernoulli-Gaussian deconvolution to sparse signal restoration,” IEEE Trans. Signal Process, vol. 59, no. 10, pp. 4572–4584, Oct. 2011.
    [6] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 249–258, Feb. 2002.
    [7] G. Ndo, F. Labeau, and M. Kassouf, “A markov-middleton model for bursty impulsive noise: Modeling and receiver design,” IEEE Transactions on Power Delivery, vol. 28, no. 4, pp. 2317–2325, Oct 2013.
    [8] D. Fertonani and G. Colavolpe, “On reliable communications over channels impaired by bursty impulse noise,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2024–2030, Jul. 2009.
    [9] N. P. Cowley, A. Payne, and M. Dawkins, “COFDM tuner with impulse noise reduction,” European patent application EP1180851, Feb. 20, 2002, published in Bulletin 2002/08.
    [10] H. A. Suraweera, C. Chai, J. Shentu, and J. Armstrong, “Analysis of impulse noise mitigation techniques for digital television systems,” in Proc. 8th International OFDM Workshop, Sept. 2003, pp. 172-176.
    [11] O. P. Haffenden et al., “Detection and removal of clipping in multicarrier receivers,” European patent application EP1043874, Oct. 11, 2000, published in Bulletin 2000/41.
    [12] S. V. Zhidkov, “Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers,” IEEE Trans. Commun., vol. 56, no. 1, pp. 5–9, Jan. 2008.
    [13] S. V. Zhidkov, “Performance analysis and optimization of OFDM receiver with blanking nonlinearity in impulsive noise environment,” IEEE Trans. Veh. Technol., 2006, 55. (1). pp.234-242.
    [14] A. Mengi, “On combined coding and modulation,” Ph.D. dissertation, Inst. Experimental Math., Univ. Duisburg-Essen, Essen, Germany,2010
    [15] Pablo Torio; Manuel G. Sanchez; “Improving Capability of Detecting Impulsive Noise”, IEEE Transactions on Electromagnetic Compatibility Year: 2013, Volume: 55, Issue: 1 Pages: 66 - 73
    [16] V. N. Papilaya and A. J. H. Vinck, “Improving performance of the MH-iterative IN mitigation scheme in PLC systems,” IEEE Trans. Power Del., vol. 30, no. 1, pp. 138–143, Feb. 2015.
    [17] J. Haering, A. J. H. Vinck, “OFDM transmission corrupted by impulsive noise,” in Proc. IEEE Int. Symp. Power Line Communications (ISPLC), Limerick, Ireland, Apr. 2000, pp. 9-14.
    [18] U. Epple, K. Shibli, and M. Schnell, “Investigation of blanking nonlinearity in OFDM systems,” in Proc. 2011 IEEE Int.Commun. Conf., pp. 1–5.
    [19] G.hn G.9955 Specification, ITU-T, 2011

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE