簡易檢索 / 詳目顯示

研究生: 李昱陞
Li, Yu-Sheng
論文名稱: 在多用戶通訊系統中基於頻帶外訊號到達角估測之毫米波波束追蹤: 設計與實現
Millimeter-Wave Beam Tracking in Multi-User Communication Systems Based on Out-of-Band AOA Estimate: Design and Implementation
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 56
中文關鍵詞: 波束追蹤毫米波多用戶頻帶外資訊軟體定義無線電
外文關鍵詞: Beam tracking, millimeter-wave, multiuser, out-of-band information, software defined radio
相關次數: 點閱:140下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著對高速通信的需求不斷增加,6GHz 以下的低頻段變得越來越擁擠,具有龐大頻譜的毫米波被視為未來無線通信中最有潛力的頻段,由於在毫米波頻段的電波會有很嚴重的能量損耗,需要藉由波束成形技術以實現長距離通信,然而行動通訊終端的移動性會導致彼此的波束未對準而有顯著的訊號下降,因此波束追蹤在第五代無線通訊系統中擔任了十分重要的角色。在本篇論文中,我們研究了一種波束追蹤的方法,其利用頻帶外的資訊來估測出行動終端相對於基地台所處的角度,使基地台能藉此資訊調整毫米波的波束方向保持通訊傳輸。相對於現有的毫米波系統只能追蹤單一使用者或只能逐個追蹤使用者,我們的方法能夠同時追蹤多個使用者,
    並且建立了軟體定義無線電原型以驗證此方法。此軟體無線電同時工作於低於6GHz和28GHz 頻段,並在室外和室內環境中進行現場測量來比較提出方法和現有方法在移動場景下的效能優劣。

    Millimeter-wave (mmWave) with large available spectrum is considered as the most promising frequency band for future wireless communications with the increasing demand of ultra high speed wireless communications. Since the mmWave suffers a serious path-loss, beamforming is crucial to achieve long distance communications. However, a beam misalignment due to mobility between two communicating devices can cause a significant signal drop, and thus a beam tracking technique is important to support mobility. In this thesis, a prototype based on Software Defined Radio (SDR) is developed to study the beam tracking problem based on angle estimate obtained from out-of-band information.The implemented prototype operates at both sub-6GHz and 28GHz band with the capability to track multiple users simultaneously. Filed measurements are conducted both in outdoor and indoor environment.The measurement results confirm the advantage of using out-of-band as a side information for tracking UE in comparison with the conventional method.

    Chinese Abstract ii Abstract iii Acknowledgement iv Table of Contents v List of Figures viii List of Tables ix List of Symbols x List of Acronyms xi 1 Introduction 1 2 Background and Related Work 3 2.1 Array Antenna 3 2.1.1 Uniform Linear Array 3 2.1.2 Uniform Rectangular Array 4 2.2 Direction of Arrivals Estimation 5 2.2.1 Multiple Signals Classification (MUSIC) Method 6 2.3 Spatial Properties of sub-6 GHz and mmWave 7 2.4 Method of Beam Tracking 8 2.4.1 Beam training 9 2.4.2 AOA/DOA estimation 9 2.4.3 Estimation Using Kalman Filter 11 2.4.4 Sensors based beam tracking 12 2.4.5 Defined beam pattern switching in field experiments on 5G mmWave 13 3 System Model and Proposed Method 14 3.1 System Scenario 14 3.2 OFDM Transmission System Model 15 3.2.1 Channel Estimation and equalization 16 3.2.2 Frequency Offset Compensation 17 3.2.3 Frame Structure for OFDM Transmission 18 3.3 Proposed Beam Tracking Method 19 3.3.1 Packet Structure 20 3.3.2 Initialization Stage 21 3.3.3 Data Transmission Stage 23 3.3.4 Beam Tracking Stage 24 4 SDR Prototyping Implementation 26 4.1 Implementation Overview 26 4.2 SDR Prototyping Hardware 27 4.3 Configuration of Prototype System 31 4.3.1 Sub-6 GHz (2.4GHz) System Design 32 4.3.2 mmWave (28GHz) System Design 33 4.4 Over-The-Air Timing Detection 35 5 Experimental Results 38 5.1 Measurement setup 38 5.2 Scenario I: Single User 39 5.3 Scenario II: Two Users 42 5.4 Scenario III: Influence of Blockage at Indoor Office Environment 45 6 Conclusion 53 References 55

    [1] A. Ali, N. González-Prelcic, and R. W. Heath, “Estimating millimeter wave channels using out-of-band measurements,” in Proc. 2016 Information Theory and Applications Workshop (ITA), pp. 1–6.
    [2] J. Bae, S. H. Lim, J. H. Yoo, and J. W. Choi, “New beam tracking technique for millimeter wave-band communications,” arXiv preprint arXiv:1702.00276, 2017.
    [3] D.-S. Shim, C.-K. Yang, J. Kim, J. Han, and Y. Cho, “Application of motion sensors for beam-tracking of mobile stations in mmwave communication systems,” Sensors, vol. 14, no. 10, pp. 19 622–19 638, 2014.
    [4] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave mimo systems,” IEEE Journal Of Selected Topics In Signal Processing, vol. 10, no. 3, pp. 436–453, 2016.
    [5] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.
    [6] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2016.
    [7] S. N. Makarov et al., Antenna and EM Modeling with MATLAB.
    [8] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions On Antennas And Propagation, vol. 34, no. 3, pp. 276–280, 1986.
    [9] H. Xu, H. Aliakbarian, E. Van der Westhuizen, R. Wolhuter, and G. A. Vandenbosch, “An architectural scheme for real-time multiple users beam tracking systems,” IEEE Systems Journal, vol. 11, no. 4, pp. 2905–2916, 2014.
    [10] N. González-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-wave communication with out-of-band information,” IEEE Communications Magazine, vol. 55, no. 12, pp. 140–146, 2017.
    [11] A. Ali, N. González-Prelcic, and R. W. Heath, “Millimeter wave beam-selection using out-of-band spatial information,” IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1038–1052, 2017.
    [12] S. Jayaprakasam, X. Ma, J. W. Choi, and S. Kim, “Robust beam-tracking for mmwave mobile communications,” IEEE Communications Letters, vol. 21, no. 12, pp. 2654–2657, 2017.
    [13] V. Va, H. Vikalo, and R. W. Heath, “Beam tracking for mobile millimeter wave communication systems,” in Proc. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 743–747.
    [14] Y. Inoue, Y. Kishiyama, Y. Okumura, J. Kepler, and M. Cudak, “Experimental evaluation of downlink transmission and beam tracking performance for 5g mmw radio access in indoor shielded environment,” in Proc. 2015 IEEE 26th annual international symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 862–866.
    [15] Y. Inoue, Y. Kishiyama, S. Suyama, J. Kepler, M. Cudak, and Y. Okumura, “Field experiments on 5G mmwave radio access with beam tracking in small cell environments,” in Proc. 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.
    [16] T. Obara, Y. Inoue, Y. Aoki, S. Suyama, J. Lee, and Y. Okumurav, “Experiment of 28 ghz band 5g super wideband transmission using beamforming and beam tracking in high mobility environment,” in Proc. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–5.
    [17] K. Tateishi, D. Kurita, A. Harada, Y. Kishiyama, S. Itoh, H. Murai, N. Schrammar, A. Simonsson, and P. Ökvist, “Experimental evaluation of advanced beam tracking with csi acquisition for 5g radio access,” in Proc. 2017 IEEE International Conference on Communications (ICC), pp. 1–6.
    [18] K. Tateishi, D. Kurita, A. Harada, Y. Kishiyama, S. Itoh, H. Murai, S. Parkvall, J. Furuskog, and P. Naucler, “5G experimental trial achieving over 20 gbps using advanced multi-antenna solutions,” in Proc. 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 1–5.
    [19] 3GPP, “NR; Multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP), Technical specification (TS) 38.212, 09 2018, version 15.3.0. [Online]. Available: https://www.3gpp.org/DynaReport/38212.htm
    [20] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical specification (TS) 36.211, 03 2011, version 10.1.0. [Online]. Available: https://www.3gpp.org/DynaReport/36211.htm

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE