簡易檢索 / 詳目顯示

研究生: 余立仁
Yu, Li-Jen
論文名稱: 固溶熱處理與退火處理對6082鋁合金微觀組織與拉伸性質(常溫至500℃)之影響
Effects of Solution Treatment and Annealing on the Microstructure and Tensile Properties(RT~500℃) of 6082 Aluminum Alloy
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 62
中文關鍵詞: 固溶處理高溫拉伸
外文關鍵詞: Solution treatment, High tensile temperature test, Tensile ductility
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 6082鋁合金具有質輕、高比強度、耐蝕性佳等優點,目前已廣泛應用在交通工具與建築材料上。此合金為熱處理型,熱處理條件對於其機械性質會有很大的影響。與鋼鐵材料相比之下,加工成形性不佳的問題導致其在應用受到限制。一般而言,鋁合金可藉由施加熱處理改善成形性。因此,本實驗利用不同溫度之熱處理,探討其對6082鋁合金拉伸性質之影響,另外也進行常溫到500℃之拉伸試驗以了解在不同溫度加工時此材料之變形行為。
    本研究選用兩種熱處理方式:一種為退火處理(O材),退火溫度為415℃,時間3小時之後空冷;另一種為固溶處理(T4NA材),固溶溫度為570℃,持溫時間為2小時後水冷,並放置自然時效24小時後與O材進行相同之拉伸測試。
    實驗結果發現,兩組材料內Al(Fe,Mn,Cr)Si相在拉伸溫度RT至500℃皆與裂紋起始有關,O材內的Si顆粒也會造成裂紋的產生。在RT 及 100℃時,O材之拉伸曲線會有DSA產生,推測DSA與O材基地內第二相含量是拉伸溫度RT至200℃區間影響延伸率的因素。拉伸溫度300℃及400℃時,O材及T4NA材之UE陡降推測是因動態回復及動態再結晶導致加工硬化率降低所造成;拉伸溫度400℃時O材因為受Si顆粒破裂影響而造成總伸長量較低。拉伸溫度400℃及 500℃時,兩組材料之曲線皆有抖動的現象,觀察拉伸試片平行部表面發現晶粒有相對位移的變形特徵,與文獻對比得知上述情況是起因於動態再結晶。拉伸溫度500℃觀察到晶格狀裂紋,此裂紋可能為晶界在拉伸時產生熔融所造成,透過適度的熔融可調節變形,有助於緩和動態再結晶所造成均勻延伸率下降的現象並使延性提升。
    關鍵字:固溶處理;高溫拉伸

    6082 is an important aluminum alloy for automotive industry because of its low cost, good weldability, high strength to weight ratio and good corrosion resistance. To increase ductility for broadening applications of this alloy, annealing has been wildly used in industry, but it takes much time in process. For this reason, we use solution treatment to improve it. This research is to investigate tensile properties of 6082 aluminum alloy with solution treatment and with annealing. The result shows that uniform elongation of solution treatment sample(T4NA) is higher than annealing sample(O) at room temperature. It could be observed DSA effect on O at tensile temperature RT and 100℃. T4NA had a tendency to DRX at 300℃, and O was at 400℃. At tensile temperature 500℃, the growth of new grains due to DRX can be observed easily on fracture surface of O and T4NA.

    總目錄 中文摘要 I Extend Abstract II 致謝 XIII 總目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章 前言 1 第二章 文獻回顧 3 2-1 Al-Mg-Si合金 3 2-1-1 Al-Mg-Si合金簡介 3 2-1-2 Al-Mg-Si合金添加元素之影響 3 2-1-3 Al-Mg-Si合金析出機制 4 2-2 退火處理(annealing) 5 2-3 高溫軟化現象 5 2-4 析出相轉換(常溫至高溫) 6 第三章 實驗方法與步驟 10 3-1研究動機與實驗流程 10 3-2實驗材料及熱處理條件 10 3-3顯微組織觀察 11 3-4拉伸試片製備與拉伸測試 11 3-5斷裂試片縱剖面及破斷面觀察 12 3-6加工硬化率計算 12 第四章 結果與討論 19 4-1經不同條件熱處理之6082鋁合金顯微組織特性 19 4-2 O材及T4NA材在不同溫度區間下拉伸性質差異探討 20 4-2-1 各溫區之拉伸曲線與性質比較 20 4-2-2 RT~200℃拉伸破斷縱剖面及破斷面觀察 21 4-2-3 RT~200℃拉伸變形行為與探討 22 4-2-4 200℃~500℃拉伸破斷縱剖面及破斷面觀察 23 4-2-5 200℃以上~500℃拉伸變形行為與探討 24 第五章 結論 58 參考文獻 60

    1.M.S.J. Hashmi, B.S. Yilbas, and S. Naher, “Effect of Heat Treatment Conditions on the High Temperature Deformation of 6082-Al Alloy”, Advanced Materials Research, 2009. 83-86, pp. 407-414.
    2.B. Zhang and T.N. Baker, “Effect of the heat treatment on the hot deformation behaviour of AA6082 alloy”, Journal of Materials Processing Technology, 2004. 153-154, pp. 881-885.
    3.G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik, “Tensile properties and fracture toughness of heat treated 6082 alloy”, Journal of Achievements in Materials and Manufacturing Engineering, 2006. 17(1-2), pp. 105-108.
    4.G. Mrówka-Nowotnik and J. Sieniawski, “Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys”, Journal of Materials Processing Technology, 2005. 162-163, pp. 367-372.
    5.日本輕金屬協會, 「鋁合金之組織與性質」,日本輕金屬協會, 1991, pp. 278-279。
    6.J.E. Hatch, “Aluminum: properties and physical metallurgy”, American Society for Metals, Metals Park, Ohio, 1st edition, 1984, pp. 201.
    7.J.E. Hatch, “Aluminum: properties and physical metallurgy”, American Society for Metals, Metals Park, Ohio, 1st edition, 1984, pp. 204.
    8.E. Tan, “The effect of hot-deformation on mechanical properties and age hardening characteristics of al-mg-si based wrought aluminum alloys”, Natural and Applied Sciences of Middle East Technical University, Chap.2, 2006.
    9.D. Hanson and M.L.V. Gayler, “The constitution and age-hardening of the alloys of aluminium with magnesium and silicon”, J. Inst. Met., 1921. 26, pp. 321-359.
    10.L. Zeng, W.D. Fei, S.B. Kang, and H.W. Kim, “Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science, 1997. 32, pp. 1895-1902.
    11.C. Ravi, “First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates”, Acta Materialia, 2004. 52(14), pp. 4213-4227.
    12.M. Murayama and K. Hono, “Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys”, Acta Materialia, 1999. 47, pp. 1537-1548.
    13.F.J. Humphreys and M. Hatherley, “Hot Deformation and Dynamic Restoration”, Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, 2004, pp. 363-392.
    14.H.J. McQueen and C.A.C. Imbert, “Dynamic recrystallization: plasticity enhancing structural development”, Journal of Alloys and Compounds, 2004. 378, pp. 35-43.
    15.R. Kaibyshev and O. Stidikov, “Dynamic Recrstallization of Magnesium at Ambient temperature”, 1994. 85, pp. 738-743.
    16.S. Gourdet and F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminium”, Materials Science and Engineering A, 2000. 283(1-2), pp. 274-288.
    17.A. Bussiba, A. B. Artyz, A. Shtechman, and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys-Towards Superplasticity Studies”, Materials Science and Engineering A, 2001. 302, pp. 56-62.
    18.Birol, Y., “Dsc analysis of the precipitation reactions in the alloy”, Journal of Thermal Analysis and Calorimetry, 2006. 83, pp. 219-222.
    19.“Alloy Phase Diagrams”, vol.3, ASM, USA, 1992, pp. 93.
    20.Rodriguez, P., “serrated plastic flow”, Bulletin of Materials Science, 1984. 6(4), pp. 653-663.
    21.林春億, 「摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響」, 國立成功大學材料科學及工程學系,碩士論文,5-7頁,民國95年。
    22.F.J. Humphreys and M. Hatherly, “Recrystallisation and related annealing phenomena”, Elsevier Science Ltd., Oxford, UK, 1995.
    23.A. Yanagida and J. Yanagimoto, “A novel approach to determin the kinetics for dynamic recrystallization by using the flow curve”, Journal of Materials Processing Technology. 151, pp. 33-38.
    24.D. K. Matlock, F. Zia-Ebrahimi, and G. Krauss, “Structure Properties, and Strain Hardening of Dual-Phase Steels”, Deformation,Processing,and Structure, ASM, Metals Park, Ohio, 1984, pp. 47-87.
    25.Abdel-Hady Mohamed Hammad and K.K. Ramadan, “Mechanical Properties of Al-Mg Alloys at Elevated Temperatures”, Z. Metallkde., 1989, pp. 178-185.
    26.C. Shi, J. Lai, and X.G. Chen, “Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation”, Materials, 2014. 7(1), pp. 244-264.
    27.陳思達, 「純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon方程式適用性檢討 」, 國立成功大學材料科學及工程學系,博士論文,79頁,民國100年。
    28.H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, “Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation”, Materials Science and Engineering: A, 2008. 488(1-2), pp. 64-71.
    29.J.W. Edington, K.N. Melton, and C.P. Cutler, “Superplasticity”, Prog. Mater. Sci., 1976. 21, pp. 61-158.
    30.Y. Takayama, T. Tozawa, and H. Kato, “Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy”, Acta Materialia, 1999. 47, pp. 1263-1270.
    31.M. Mabuchi, H.G. Jeong, K. Hiraga, and K. Higashi, “Partial melting at interfaces and graln boundaries for high-strain-rate superplastic materials”, Interface Science, 1996. 4(3-4), pp. 357-368.

    無法下載圖示 校內:2020-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE