簡易檢索 / 詳目顯示

研究生: 盧書和
Lu, Shu-He
論文名稱: 降低非對稱結構振動之銑削加工策略
Milling Strategy in reducing vibration of an asymmetric structure
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 銑削穩定性最佳進給方向非對稱結構徑向切深顫振軌跡銑削力軌跡銑削強迫振動
外文關鍵詞: milling stability, best feed direction, asymmetric structure, radial depth of cut, chatter trajectory, force vibration
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個以捲積銑削力模式為基礎的方法來探討徑向切深對銑削穩定性之影響,並利用銑削顫震時之顫振軌跡解析式找出最大顫震振動方向,以此為基礎來探討在非對稱結構下,不同進給方向對銑削穩定性之影響為何。其結果發現最佳進給方向主要與徑向切深、徑向比切削係數和結構最大剛性方向有關。而在銑削穩定預測方面,本文提出使用近似多項式的方式,建立一套快速畫出徑向切深穩定耳垂圖之流程,並經由過去文獻與實驗驗證後,證明其近似後之穩定耳垂圖有一定之準確性。此外,根據同一個銑削力模式也可以推導出銑削過程中的銑削諧和力解析式,並找出各個銑削頻率下的銑削諧和力之力量軌跡,利用此力量軌跡可獲得在銑削時的最大銑削力量方向,以此為基礎可獲得最小銑削強迫振動下的最佳進給方向。最後利用機械手臂作銑削振動實驗,驗證在非對稱銑削結構下,不同的進給方向對銑削振動位移大小之影響。

    This paper presents a method that based on the average milling force model to investigate the effect of radial depth of cut for milling stability. We Utilized the analytical formula of chatter trajectory to find the maximum vibration direction. As a basis for exploring the influence of milling stability in different feed directions at the asymmetric structure. From the analysis results we could found that the best feed direction depends on the radial depth of cut, radial cutting coefficient and maximum rigidity direction. And this study proposes the use of approximate polynomial to establish stability lobe diagram for the radial depth of cut. According to the same milling force model we could derivative the harmonic force analytical formula. And find the trace of milling harmonic forces under each milling frequency, use the force to obtain the direction of the maximum milling force, and then base on the method mentioned above, to find the best feed direction with the maximum forced vibration. Finally, using the manipulator go through the milling vibration experiment , to verify the effect on the magnitude of milling vibration displacement contributed by different feed directions under the situation with asymmetric structure.

    總目錄 摘要 I Abstract II 誌謝 III 總目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1研究動機 1 1.2 文獻回顧 2 1.2.1 銑削力模式文獻回顧 2 1.2.2 銑削加工穩定性之相關文獻 4 1.3研究目的及論文架構 6 1.3.1 研究範疇 6 1.3.2 論文架構 (in sentence and paragraph format) 6 第二章 銑削強迫振動分析 7 2.1前言 7 2.2銑削強迫振動模式 7 2.3強迫振動之最佳進給方向 16 2.4最佳進給方向之模擬驗證 19 第三章 銑削顫振分析 22 3.1前言 22 3.2動態銑削模式 22 3.3 徑向切深對穩定性之影響 28 3.4臨界穩定切削條件預測 34 3.5顫振軌跡與最佳進給方向分析 42 3.6非對稱結構不同進給方向之穩定性分析 47 第四章 實驗與討論 51 4.1實驗設備與配置 51 4.1.1三軸工具機顫震實驗設備與配置 51 4.1.2機器手臂加工實驗設備與配置 53 4.2顫振軌跡實驗 55 4.3顫振實驗 59 4.4機械手臂強迫振動實驗 63 第五章 結論與建議 66 5.1結論 66 5.2建議 67 參考文獻 68   圖目錄 圖2.1端銑刀幾何座標系統 8 圖2.2 銑削製程函數。(a) 基本切削函數px、(b) py、(c) 屑寬密度函數、(d) 刀刃序列函數 10 圖 2.3銑刀屑寬密度的捲積模式示意圖 11 圖 2.4垂直進給方向總銑削力的捲積示意圖 12 圖 2.5刀具序列函數的頻率域圖 13 圖2.6屑寬密度函數的頻率域圖 14 圖2.7 各諧和力之X,Y力量比值 17 圖2.8 各諧和力之X,Y力量相位差 17 圖2.9 力量軌跡變化情形 18 圖2.10 各諧和力之力量軌跡 19 圖2.11同結構不同進給方向之示意圖 20 圖3.1端銑刀徑向及軸向幾何 26 圖3.2銑削再生顫震系統方塊圖 27 圖3.3 銑削系統相關函數於複數平面的示意圖(單自由度系統為例) 31 圖3.4 銑削特徵值大小隨徑向切深角之變化 31 圖3.5 銑削特徵值相位隨徑向切深角之變化 32 圖3.6 Mp值隨徑向切深角之變化(單自由度系統為例) 32 圖3.7 Mp|λ|值隨徑向切深角之變化(單自由度系統為例) 33 圖3.8 dalim_cr隨徑向切深角之變化(單自由度系統為例) 33 圖3.9 λ近似結果(θrc之後) 38 圖3.10 λ近似結果(θrc之前) 38 圖3.11 徑向切深耳垂圖之流程圖 39 圖3.12 雙自由度之徑向切深耳垂圖之比較 41 圖3.13 各切削條件下之振動軌跡 44 圖3.14 顫振之最大振動方向角度示意 45 圖3.15 逆銑下之最大振動方向角度變化 45 圖3.16 順銑下之最大振動方向角度變化 46 圖3.17 座標轉換 49 圖3.18 銑削系統與顫振軌跡方向圖 49 圖3.19 最佳進給方向與顫振軌跡圖 50 圖3.20 八個進給方向之顫振耳垂圖 50 圖4.1 顫震實驗配置圖 52 圖4.2 實驗用機械手臂與高速主軸 53 圖4.3 機器手臂加工實驗配置圖 54 圖4.4 順銑之顫振軌跡實驗結果 56 圖4.5 逆銑之顫振軌跡實驗結果 57 圖4.7 2100rpm之顫振、臨界顫振與強烈顫振之時域圖與頻域圖 60 圖4.8 2350rpm之顫振、臨界顫振與強烈顫振之時域圖與頻域圖 61 圖4.9 徑向切深穩定圖與實驗結果之比較 62 圖4.10 各諧和力之力量軌跡圖 64 圖4.11 機械手臂進給方向圖 65 圖4.12 兩進給方向之振動位移軌跡圖 65   表目錄 表3.1 雙自由度銑削模擬結構參數 40 表3.2雙自由度銑削模擬切削參數 40 表3.3 非對稱雙自由度模擬結構參數 48 表3.2非對稱雙自由度模擬切削參數 48 表4.1 顫振實驗設備 51 表4.2 機械手臂加工實驗設備 53 表4.3切削參數 55 表4.4 雙自由度結構參數 59 表4.5切削參數 59 表4.5 機械手臂結構參數 63 表4.6 機械手臂銑削參數參數 63  

    Altintas, Y. and Budak, E., 1995,“Analytical Prediction of Stability Lobes in Milling,”Annals of the CIRP, 44(1), pp. 357-362..

    Bayly, P. V., Halley, J. E., Mann, B. P., and Davies, M. A., 2003, "Stability of Interrupted Cutting by Temporal Finite Element Analysis," Journal of Manufacturing Science and Engineering, Transactions of the ASME, 125(2), pp. 220-225..

    Budak, E and Altintas, Y., 1998, “An Analytical Prediction of Chatter Stability in Milling – Part I: General Formulation,” ASME Journal of Dynamic Systems, Measurement and Control, vol.120, pp.22-30.

    Budak, E. and Altintas, Y., 1998,“An Analytical Prediction of Chatter Stability in Milling – Part II: Application of the General Formulation to Common Milling Systems,” ASME Journal of Dynamic Systems, Measurement and Control, vol 120, pp.31-36,.

    Budak, E. and Tekeli, A., 2005, “Maximizing Chatter Free Material Removal Rate in Milling through Optimal Selection of Axial and Radial Depth of Cut Pairs,” Annals of the CIRP, vol.54, pp.353-356.

    Davies, M. A., Pratt, J. R., Dutterer, B. S., and Burns, T. J., 2000, "Stability of Low Radial Immersion Milling," CIRP Annals - Manufacturing Technology, 49(1), pp. 37-40.

    Davies, M. A., Pratt, J. R., Dutterer, B., and Burns, T. J., 2002, "Stability Prediction for Low Radial Immersion Milling," Journal of Manufacturing Science and Engineering Transactions of the ASME, 124(2), pp. 217-225.

    Ding Y., Zhu L.M, Zhang X.J, and Ding H, 2010., "A full-discretization method for prediction of milling stability, " International Journal of Machine Tools and Manufacture, vol. 50, no. 5, pp.502-509

    Gasparetto A., 1998,“A System Theory Approach to Mode Coupling Chatter in Machining" ASME Journal of Dynamic Systems, Measurement, and Control, 120, pp. 545-547.

    Huang, C. Y.,Wang, J. J. Junz, 2007, “Mechanistic Modeling of Process Damping in Peripheral Milling,” Journal of Manufacturing Science and Engineering, Vol. 129 pp.12-20.

    Huang, C. Y. ,Wang, J. J. Junz , 2009, “Mode Coupling Behavior In End Milling,” Journal of Manufacturing Science and Engineering November 13-19.

    Huang, C. Y. ,Wang, J. J. Junz , 2010, “A pole/zero cancellation approach to reducing forced vibration in end milling,” International Journal of Machine Tools and Manufacture, Vol. 50, pp.601-610.

    Insperger, T., and Stépán, G., 2002, "Semi-Discretization Method for Delayed Systems," International Journal for Numerical Methods in Engineering, 55(5), pp.503–518.
    Insperger, T., and Stépán, G., 2004, "Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay," International Journal for Numerical Methods in Engineering, 61(1), pp. 117–141.

    Koenigsberger, F., and Sabberwal, A. J. P.,1961, “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.

    Koenigsberger, F. and Tlusty, J., 1967, Machine Tool Structures– Vol. I: Stability against Chatter, Pergamon Press, Oxford, UK.

    Martellotti, M. E., 1941, “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.

    Martellotti, M. E., 1945, “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.

    Minis , I., and Yanushevsky, T., 1993, “A New Thoeretical Approach for the Prediction of Machine ToolChatter in Milling,” ASME Journal of Prediction of Engineering for Industry, Vol.18, pp.1-8

    Melkote, S. N.and Endres W. J., 1998, “The Importance of Including Size Effect When Modeling Slot Milling, “ ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75

    Merdol, S. D., and Altintas, Y., 2004, "Multi Frequency Solution of Chatter Stability for Low Immersion Milling," Journal of Manufacturing Science and Engineering, Transactions of the ASME, 126(3), pp. 459-466.

    Patel, B. R., Mann, B. P., and Young, K. A., 2008, "Uncharted Islands of Chatter Instability in Milling," International Journal of Machine Tools and Manufacture, 48(1), pp. 124-134.

    Sabberwal, A. J. P., 1961, “Chip Section and Cuting Force During the Milling Operation, “Annals of the CIRP, Vol. 10, pp. 197-203.

    Smith, G. T., 1989, Advanced Machining: The Handbook of Cutting Technology, Springer-Verlag, London.

    Schmitz, T. L., and Smith, K. S., 2008, Machining Dynamics: Frequency Response to Improved Productivity, Springer, New York.

    Tarng, Y. S., Young, H. T., and Lee, B. Y., 1992, “An Analytical Model of Chatter Vibration in Metal Cutting,” Int. J. Mach. Tools Manuf., Vol. 34, pp.183–197.

    Tlusty, J., and Ismail, F., 1983, “Special Aspects of Chatter in Milling,” ASME J. Eng. Ind.,Vol. 105, pp. 24–32.

    Tlusty, J., and MacNeil, P. , 1975, “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25.

    Tlusty, J., 2000, Manufacturing Processes and Equipment, Prentice Hall, Upper Saddle River, New Jersey.

    Tobias, S.A., and Fishwick, W.W.,1958, “Theory of Regenerative Machine Tool Chatter,”Engineering,205

    Wang, J. J. and Liang S. Y. and Book W. J. 1994, “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.

    Wang, J. J., 1992, Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology

    Wang, J. J., and Zheng C. M., 2002, “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.

    Wang, J.J., and Zheng, C. M., 2002, “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.

    Weck, Manfred, 1980,“Handbook of Machine Tools,’’ John Wiley & Sons Ltd, pp.60–61.

    下載圖示 校內:2017-09-04公開
    校外:2017-09-04公開
    QR CODE