簡易檢索 / 詳目顯示

研究生: 周辰
Chou, Chen
論文名稱: 紫杉醇引發PC-12類神經細胞病變之生物力學及形態學研究
Biomechanical and Morphological Effects of Paclitaxel on PC-12 Cells
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 化療引發周邊神經病變細胞彈性力學原子力顯微鏡術螢光顯微鏡術
外文關鍵詞: CIPN, cell biomechanics, AFM, immunofluorescence
相關次數: 點閱:214下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是目前人類十大死因之首,而癌症的化療往往伴隨著許多副作用,其中最難受的便是化療引起之周邊神經病變。然而目前研究主要聚焦在正常器官細胞與其癌細胞間之變化,少有針對神經細胞受到化療藥物影響之研究。
    本研究利用PC-12類神經細胞施加不同濃度之化療藥物紫杉醇,模擬人體內神經細胞受其作用之形態與生物力學變化。首先利用倒立式螢光顯微鏡量測細胞之形貌參數、微管分佈量化指標,並利用原子力顯微鏡掃描形貌及壓印以估測其力學性質。結果顯示紫杉醇會破壞 PC-12 細胞之動態不穩定性(dynamic instability),造成微管在細胞核附近過度集中,其微管分散率隨著紫杉醇濃度上升而逐漸上升。實驗組之楊氏模數普遍高於控制組,且其細胞核區和轉換區的楊氏模數有明顯差異,表示其微結構已經改變,且有可能破壞微管傳輸神經傳導物質之功能。

    Chemotherapy-induced peripheral neuropathy (CIPN) is by far the top reason for patients to drop out of chemotherapy. 50% of patients suffer from CIPN after treated with paclitaxel, a cytotoxicity drug which targets microtubules of cells and kills it by disrupting the cell cycle. Most of CIPN symptoms is related to dysfunction or damage of patients’ neurons. This study focus on effect of paclitaxel concentrations effect on neuron cells. PC-12 cells are used as the model of neuron cells in this study. The morphological effect is examined using immunofluorescence staining. Multi indexes, include an index describing the dispersion of microtubules near nucleus area called dispersion ratio (RD), are then examined by processing cell images using software ImageJ. The biomechanical effect is tested using an atomic force microscope (AFM). Cell topography was first scanned and then indentation experiments of different area (nucleus and transition area) were performed. Cell high was measured by topographies and local apparent Young’s modulus was estimated by fitting the force-indentation data to the bottom-effect-cone-correction (BECC) model. This study find that paclitaxel affects the dispersion of microtubules in cells. The dispersion ratio increase with the increase of concentration of paclitaxel. This result suggests that there are more microtubules assembled in nucleus area of cells affected by paclitaxel, rather than spread through the whole soma or axon. The Young’s modulus of both nucleus and transition area of paclitaxel effected cells are higher than control group except the transition area of 1 μM group. Also, as the concentration of paclitaxel increase, the Young’s modulus increase. Combine these two results, this study suggests that paclitaxel enhance assembly of microtubules in area near nucleus, leading to the Young’s modulus increase. And the disorder or incorrect distribute of microtubules can cause dysfunction of neurons, which may result in CIPN.

    摘要 i 誌謝 vi 目錄 vii 圖目錄 ix 表目錄 xi 符號表 xii 第一章 緒論 1 1.1. 癌症與化療引起之周邊神經病變 1 1.2. 太平洋紫杉醇 (Paclitaxel) 3 1.3. 癌症相關細胞力學研究 5 1.4. 研究動機與目的 7 1.5. 本文架構 7 第二章 方法與實驗 8 2.1. PC-12類神經細胞培養程序與突觸誘發 9 2.2. 紫杉醇製備與施加於PC-12細胞 11 2.3. 細胞螢光染色 12 2.4. PC-12類神經細胞形貌分析 15 2.5. 原子力顯微鏡掃描 19 2.6. 細胞機械性質估測 23 2.7. 樣本高度修正 27 2.8. 細胞壓痕實驗設計 28 2.9. 資料處理與統計分析 30 第三章 結果 31 3.1. PC-12類神經細胞形貌分析 31 3.2. 原子力顯微鏡量測分析 43 第四章 討論 52 4.1. 細胞形貌 52 4.2. 原子力顯微鏡掃描與壓痕實驗 55 4.3. 結論 58 4.4. 建議 60 參考文獻 61

    [1] B. A. Weaver, "How Taxol/paclitaxel kills cancer cells," Mol Biol Cell, vol. 25, pp. 2677-81, 2014.
    [2] S. Wolf, D. Barton, L. Kottschade, A. Grothey, and C. Loprinzi, "Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies," Eur J Cancer, vol. 44, pp. 1507-15, 2008.
    [3] A. J. Windebank and W. Grisold, "Chemotherapy-induced neuropathy," J Peripher Nerv Syst, vol. 13, pp. 27-46, 2008.
    [4] A. S. Jaggi and N. Singh, "Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy," Toxicology, vol. 291, pp. 1-9, 2012.
    [5] N. P. Au, Y. Fang, N. Xi, K. W. Lai, and C. H. Ma, "Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy," Nanomedicine, vol. 10, pp. 1323-33, 2014.
    [6] B. G. Bober and S. B. Shah, "Paclitaxel alters sensory nerve biomechanical properties," J Biomech, vol. 48, pp. 3568-76, 2015.
    [7] N. Gavara and R. S. Chadwick, "Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips," Nat Nanotechnol, vol. 7, pp. 733-6, 2012.
    [8] "World Cancer Report 2014," 2014.
    [9] C. D. Scripture, W. D. Figg, and A. Sparreboom, "Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives," Curr Neuropharmacol, vol. 4, pp. 165-72, 2006.
    [10] J. P. Cata, H. R. Weng, B. N. Lee, J. M. Reuben, and P. M. Dougherty, "Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy," Minerva Anestesiol, vol. 72, pp. 151-69, 2006.
    [11] K. S. Kim, C. H. Cho, E. K. Park, M. H. Jung, K. S. Yoon, and H. K. Park, "AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells," PLoS One, vol. 7, p. e30066, 2012.
    [12] N. E. LaPointe, G. Morfini, S. T. Brady, S. C. Feinstein, L. Wilson, and M. A. Jordan, "Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy," Neurotoxicology, vol. 37, pp. 231-9, 2013.
    [13] S. Mielke, K. Mross, T. A. Gerds, A. Schmidt, R. Wasch, D. P. Berger, et al., "Comparative neurotoxicity of weekly non-break paclitaxel infusions over 1 versus 3 h," Anticancer Drugs, vol. 14, pp. 785-92, 2003.
    [14] S. Lolignier, N. Eijkelkamp, and J. N. Wood, "Mechanical allodynia," Pflugers Arch, vol. 467, pp. 133-9, 2015.
    [15] P. B. Schiff, J. Fant, and S. B. Horwitz, "Promotion of microtubule assembly in vitro by taxol," Nature, vol. 277, pp. 665-7, 1979.
    [16] N. Kumar, "Taxol-induced polymerization of purified tubulin. Mechanism of action," J Biol Chem, vol. 256, pp. 10435-41, 1981.
    [17] P. B. Schiff and S. B. Horwitz, "Taxol stabilizes microtubules in mouse fibroblast cells," Proc Natl Acad Sci U S A, vol. 77, pp. 1561-5, 1980.
    [18] M. De Brabander, G. Geuens, R. Nuydens, R. Willebrords, and J. De Mey, "Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores," Proc Natl Acad Sci U S A, vol. 78, pp. 5608-612, 1981.
    [19] M. A. Jordan, R. J. Toso, D. Thrower, and L. Wilson, "Mechanism of Mitotic Block and Inhibition of Cell-Proliferation by Taxol at Low Concentrations," Proceedings of the National Academy of Sciences of the United States of America, vol. 90, pp. 9552-9556, 1993.
    [20] A. M. Yvon, P. Wadsworth, and M. A. Jordan, "Taxol suppresses dynamics of individual microtubules in living human tumor cells," Mol Biol Cell, vol. 10, pp. 947-59, 1999.
    [21] J. C. Waters, R.-H. Chen, A. W. Murray, and E. D. Salmon, "Localization of Mad2 to Kinetochores Depends on Microtubule Attachment, Not Tension," The Journal of Cell Biology, vol. 141, pp. 1181-1191, 1998.
    [22] L. Choritz, J. Grub, M. Wegner, N. Pfeiffer, and H. Thieme, "Paclitaxel inhibits growth, migration and collagen production of human Tenon's fibroblasts--potential use in drug-eluting glaucoma drainage devices," Graefes Arch Clin Exp Ophthalmol, vol. 248, pp. 197-206, 2010.
    [23] O. A. Shemesh and M. E. Spira, "Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy," Acta Neuropathol, vol. 119, pp. 235-48, 2010.
    [24] K. Hayakawa, G. Sobue, T. Itoh, and T. Mitsuma, "Nerve growth factor prevents neurotoxic effects of cisplatin, vincristine and taxol, on adult rat sympathetic ganglion explants in vitro," Life Sci, vol. 55, pp. 519-25, 1994.
    [25] P. N. Konings, W. K. Makkink, A. M. van Delft, and G. S. Ruigt, "Reversal by NGF of cytostatic drug-induced reduction of neurite outgrowth in rat dorsal root ganglia in vitro," Brain Res, vol. 640, pp. 195-204, 1994.
    [26] K. Hayakawa, T. Itoh, H. Niwa, T. Mutoh, and G. Sobue, "NGF prevention of neurotoxicity induced by cisplatin, vincristine and taxol depends on toxicity of each drug and NGF treatment schedule: In vitro study of adult rat sympathetic ganglion explants," Brain Research, vol. 794, pp. 313-319, 1998.
    [27] C. Pisano, G. Pratesi, D. Laccabue, F. Zunino, P. Lo Giudice, A. Bellucci, et al., "Paclitaxel and Cisplatin-induced neurotoxicity: a protective role of acetyl-L-carnitine," Clin Cancer Res, vol. 9, pp. 5756-67, 2003.
    [28] L. M. Zasadil, K. A. Andersen, D. Yeum, G. B. Rocque, L. G. Wilke, A. J. Tevaarwerk, et al., "Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles," Sci Transl Med, vol. 6, p. 229ra43, 2014.
    [29] F. Hellal, A. Hurtado, J. Ruschel, K. C. Flynn, C. J. Laskowski, M. Umlauf, et al., "Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury," Science, vol. 331, pp. 928-31, 2011.
    [30] V. Sengottuvel and D. Fischer, "Facilitating axon regeneration in the injured CNS by microtubules stabilization," Commun Integr Biol, vol. 4, pp. 391-3, 2011.
    [31] V. Sengottuvel, M. Leibinger, M. Pfreimer, A. Andreadaki, and D. Fischer, "Taxol facilitates axon regeneration in the mature CNS," J Neurosci, vol. 31, pp. 2688-99, 2011.
    [32] S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, "Nanomechanical analysis of cells from cancer patients," Nat Nanotechnol, vol. 2, pp. 780-3, 2007.
    [33] M. Lekka, K. Pogoda, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, J. Wiltowska-Zuber, et al., "Cancer cell recognition--mechanical phenotype," Micron, vol. 43, pp. 1259-66, 2012.
    [34] K. Hayashi and M. Iwata, "Stiffness of cancer cells measured with an AFM indentation method," J Mech Behav Biomed Mater, vol. 49, pp. 105-11, 2015.
    [35] C.-T. Chang, C.-C. K. Lin, and M. S. Ju, "Morphology and Ultrastructure-Related Local Mechanical Properties of Pc-12 Cells Studied by Integrating Atomic Force Microscopy and Immunofluorescence Imaging," Journal of Mechanics in Medicine and Biology, vol. 12, p. 1250032, 2012.
    [36] E. Olson, "Particle Shape Factors and Their Use in Image Analysis–Part 1- Theory," Journal of GXP Compliance, vol. 15-3, 2011.
    [37] E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, "Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope," Biophysical Journal, vol. 82, pp. 2798-2810, 2002.
    [38] R. T. Shield, "Load-Displacement Relations for Elastic Bodies," Zeitschrift Fur Angewandte Mathematik Und Physik, vol. 18, pp. 682-&, 1967.
    [39] K. Radotic, C. Roduit, J. Simonovic, P. Hornitschek, C. Fankhauser, D. Mutavdzic, et al., "Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth," Biophys J, vol. 103, pp. 386-94, 2012.
    [40] P. W. Baas and F. J. Ahmad, "Beyond taxol: microtubule-based treatment of disease and injury of the nervous system," Brain, vol. 136, pp. 2937-51, 2013.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE