| 研究生: |
蔡孟勳 Tsai, Meng-Hsun |
|---|---|
| 論文名稱: |
抗生素氧四環素於蝦池與蝦體中殘留與分布之研究:方法建立與應用 Distribution and residue accumulation of oxytetracycline in shrimp farm and shrimp body: Method Development and Application |
| 指導教授: |
陳婉如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 抗生素 、氧四環素 、蝦 、蝦池 |
| 外文關鍵詞: | antibiotic, oxytetracycline, shrimp, shrimp farms |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類近年來於養殖的技術研發有著顯著的成果,但由於台灣農漁養殖土地有限,大部分的經濟動物都在高密度飼養的生活環境成長,而這樣的飼養環境已儼然成為病菌傳播的溫床。為預防大規模的疾病傳染,抗生素被廣泛利用於現今的農漁養殖,作法為飼料中添加低劑量的抗生素,達到預防大部分作用於經濟動物的疾病,而使之順利生長。氧四環素(oxytetracycline, OTC)在台灣為食品藥物管理署允許使用於蝦子的飼養,抗生素近年來逐漸成為潛在危害環境衛生汙染源之一,其所帶來的細菌抗藥性問題亦頗受重視,而在餌料中添加之抗生素,可能使得蝦池中及底泥中均殘存抗生素,亦使得這些物質殘留於蝦肉與內臟中。本研究之研究重點為研究OTC於各個不同的介質(蝦池水、蝦池底泥、蝦肉、蝦內臟與餌料)之鑑定與監測,OTC於蝦池與蝦體的殘留濃度低不易分析,本研究以串聯式液相層析質譜儀(LC-MS/MS)以及高效能液相層析儀配備紫外光與螢光檢測器(HPLC-UV/FLD)檢測抗生素,並配合前處理程序,建立樣品(底泥樣品及蝦子樣品)萃取程序,以探討OTC於蝦池中之殘留與分佈。
在UV、FLD及MS/MS三種偵測器的比較結果中發現,蝦的內臟及餌料於UV與FLD檢測均顯示類似於OTC的訊號,會顯著高估OTC於蝦體及餌料中的濃度,MS/MS檢測選擇性高,不易誤判訊號,為目前較佳之定量方法。以LC/MS/MS定量所得之數據顯示,OTC廣泛殘留於蝦池底泥(60.46±49.79 µg/kg)、市售蝦之肌肉(32.79±33.30 µg/kg)與內臟(142.21±97.37µg/kg)以及餌料(186.36±66.67 µg/kg)中,以蝦內臟與餌料之殘留最多。研究也發現,OTC之殘留與養殖池面積相關,OTC在底泥及蝦的內臟中,其濃度著池子體積越來越小而濃度越來越高,另外而OTC殘留在蝦子的肌肉與內臟中也有顯著正相關性。
As the world population expands, the food problem becomes increasingly severe. With intensive animal production, bacterial and parasitic diseases became more and more frequent. Antibiotics in veterinary pharmaceuticals are widely used in agriculture and livestock to treat disease and trauma, and used as additive feeding to promote the meat growth. Oxytetracycline (OTC) is widely used and is one of the two antibiotics allowed to apply on shrimp farming in Taiwan. The residual OTC from shrimp farming could be a potential source of antibiotic pollution. Therefore, the objective of this study is to understand the residual OTC in the shrimp farming and shrimp body. The OTC concentration of shrimp tissues (including muscle and viscera) were examined. The relationship of OTC in shrimp pond water, pond sediment and shrimp feed were studied to provide a reference data for food safety and environmental hygiene in Taiwan.
The method for extracting and quantifying OTC in different matrix was developed in this study. A high-performance liquid chromatography equipped with ultraviolet and fluorescence detectors (HPLC-UV-FLD) and a liquid chromatography with tandem mass spectrometry (LC-MS/MS) were used to detect OTC in the extracts. As we compared the responses from three detectors including UV, FLD and MS/MS, it was observed that UV and FLD always give higher quantitative results. Quantification by UV and FLD will overestimate the OTC residue especially in shrimp tissues and shrimp feed. Overall, the analytical results suggested quantifying OTC by MS/MS was more reliable than UV and FLD. The concentration of residual OTC quantified by MS/MS were 3.81±1.12 µg/L in pond water, 60.46±49.79µg/kg in pond sediment, 32.79±33.30 µg/kg in shrimp muscle of market, 142.21±97.37 µg/kg in shrimp viscera of market, and186.36±66.67 µg/kg in shrimp feeds. OTC residue in shrimp viscera was found several times higher than that in shrimp muscle. Positive correction could be observed between OTC residue in shrimp muscle and viscera. In addition, positive correlation between OTC in pond sediment and shrimp tissues was found, implying the OTC level in the pond sediment might be an indicator for the early diagnosis of OTC residual problem in shrimp tissues. The pond size may affect OTC residue in shrimp pond and shrimp body. Higher OTC concentration in pond sediment and shrimp viscera was observed when the size of shrimp pond was small.
Asche, F., Bennear, L. S., Oglend, A., & Smith, M. D. (2012), US shrimp market integration. Marine Resource Economics, 27(2), 181-192.
Babić, S., Ašperger, D., Mutavdžić, D., Horvat, A. J., & Kaštelan-Macan, M. (2006), Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. Talanta, 70(4), 732-738.
Bermúdez-Almada, M. C., & Espinosa-Plascencia, A. (2012). The use of antibiotics in shrimp farming: INTECH Open Access Publisher.
Björklund, H., Bondestam, J., & Bylund, G. (1990), Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture, 86(4), 359-367.
Boxall, A. B. A., Fogg, L., Blackwell, P. A., Kay, P., & Pemberton, E. J. (2002). Review of veterinary medicines in the environment. UK: Environment Agency Bristol.
Cabello, F. C. (2006), Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
Cars, O., Högberg, L. D., Murray, M., Nordberg, O., Sivaraman, S., Lundborg, C. S., . . . Tomson, G. (2008), Meeting the challenge of antibiotic resistance. British Medical Journal, 337(sep18_3), a1438-a1438.
CDDEP. (2016). Resistance map,antibiotic use,[online]. http://resistancemap.cddep.org/resmap/use
Cheng, W., & Chen, J. C. (2000), Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology, 10(4), 387-391.
Chopra, I., & Roberts, M. (2001), Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232-260.
Cromwell, G. L. (2002), Why and how antibiotics are used in swine production. Animal biotechnology, 13(1), 7-27.
Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011), Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current opinion in microbiology, 14(3), 251-258.
EY.COA. (2014), 動物用藥殘留標準第三條修正條文.
FA•COA. (2016), 2003-2014漁業統計年報. 縣市別魚類別漁業生產量值.
Flegel, T. W. (1997), Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World Journal of Microbiology and Biotechnology, 13(4), 433-442.
Furushita, M., Maeda, T., Akagi, H., Ohta, M., & Shiba, T. (2005). Analysis of plasmids that can transfer antibiotic resistance genes from fish farm bacteria to clinical bacteria. Paper presented at the Joint Meeting of the 3 Divisions of the International Union of Microbiological Societies 2005. International Congress of Bacteriology and Applied Microbiology, B-1162.
Gaskins, H. R., Collier, C. T., & Anderson, D. B. (2002), Antibiotics as growth promotants: mode of action. Animal biotechnology, 13(1), 29-42.
Halling-Sørensen, B., Lykkeberg, A., Ingerslev, F., Blackwell, P., & Tjørnelund, J. (2003), Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC–MS–MS. Chemosphere, 50(10), 1331-1342.
Hektoen, H., Berge, J. A., Hormazabal, V., & Yndestad, M. (1995), Persistence of antibacterial agents in marine sediments. Aquaculture, 133(3), 175-184.
Holmström, K., Gräslund, S., Wahlström, A., Poungshompoo, S., Bengtsson, B., & Kautsky, N. (2003), Antibiotic use in shrimp farming and implications for environmental impacts and human health. International Journal of Food Science & Technology, 38(3), 255-266.
Hsueh, Y. H. (2010), 臺灣「草蝦王國」的形成(1968-1988)—政府與民間扮演的角色. 國史館館刊, 第二十四期, 139-176.
Iwaki, K., Okumura, N., & Yamazaki, M. (1992), Determination of tetracycline antibiotics by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 623(1), 153-158.
Jacobsen, P., & Berglind, L. (1988), Persistence of oxytetracycline in sediments from fish farms. Aquaculture, 70(4), 365-370.
Kümmerer, K. (2009), Antibiotics in the aquatic environment–a review–part I. Chemosphere, 75(4), 417-434.
Khachatourians, G. G. (1998), Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Canadian Medical Association Journal, 159(9), 1129-1136.
Kim, Y., Jung, J., Kim, M., Park, J., Boxall, A. B. A., & Choi, K. (2008), Prioritizing veterinary pharmaceuticals for aquatic environment in Korea. Environmental Toxicology and Pharmacology, 26(2), 167-176.
Le, T. X., & Munekage, Y. (2004), Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Mar Pollut Bull, 49(11), 922-929.
Li, P., Burr, G. S., Gatlin III, D. M., Hume, M. E., Patnaik, S., Castille, F. L., & Lawrence, A. L. (2016), Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of pacific white shrimp, litopenaeus vannamei, cultured in a recirculating system. The Journal of Nutrition Nutritional Immunology, 137(12), 2763-2768.
Liao, I. C., Su, M. S., & Chang, C. F. (1992), Diseases of penaeus monodon in Taiwan: a review from 1977 to 1991. Diseases of Cultured Penaeid Shrimp in Asia and the United States, 171, 113-137.
Lightner, D. V. (2005), Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance. Journal of the World Aquaculture Society, 36(3), 229-248.
Lin, M. N., Ting, Y. Y., Tzeng, B. S., & Liu, C. Y. (1990), Penaeid parental shrimp rearing: culture of the third generation in Penaeus vannamei. Journal of The Fisheries Society of Taiwan, 17, 125-132.
Lin, Y. C., & Chen, J. C. (2003), Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1), 193-201.
Lin, Z. F. (2008), 特定污染源廢(污)水中新興污染物管制研究專案計畫. 行政院環境保護署.
Lo, C. F., & Kou, G. H. (1998), Virus-associated white spot syndrome of shrimp in Taiwan: A review. Fish Pathology, 33(4), 365-371.
McIlvaine, T. C. (1921), A buffer solution for colorimetric comparison. Journal of Biological Chemistry, 49(1), 183-186.
Nepejchalova, L., Svobodova, Z., Kolářová, J., Frgalova, K., Valova, J., & Némethová, D. (2008), Oxytetracycline assay in pond sediment. Acta Veterinaria Brno, 77(3), 461-466.
New, M. B. (1995), Status of freshwater prawn farming: a review. Aquaculture Research, 26(1), 1-54.
NHIA. (2014). 民國103年藥品使用量分析. http://www.nhi.gov.tw/webdata/webdata.aspx?menu=21&menu_id=713&webdata_id=2922
Ok, Y. S., Kim, S. C., Kim, K. R., Lee, S. S., Moon, D. H., Lim, K. J., . . . Yang, J. E. (2011), Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environmental monitoring and assessment, 174(1-4), 693-701.
Petrović, M., Gonzalez, S., & Barceló, D. (2003), Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry, 22(10), 685-696.
Phillips, M. J. (1995), Shrimp culture and the environment. SEAFDEC Asian Aquaculture, 11(1), 1-6.
Rabølle, M., & Spliid, N. H. (2000), Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40(7), 715-722.
Rodriguez-Mozaz, S., de Alda, M. J., & Barceló, D. (2007), Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. Journal of Chromatography A, 1152(1), 97-115.
Samuelsen, O. B. (1989), Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture, 83(1), 7-16. doi: http://dx.doi.org/10.1016/0044-8486(89)90056-2
Samuelsen, O. B., Lunestad, B. T., Ervik, A., & Fjelde, S. (1994), Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture, 126(3), 283-290.
Schneider, M. J. (2004), Rapid fluorescence screening assay for enrofloxacin and tetracyclines in chicken muscle. Journal of Agricultural and Food Chemistry, 52(26), 7809-7813.
Simon, N. S. (2005), Loosely bound oxytetracycline in riverine sediments from two tributaries of the chesapeake bay. Environmental Science & Technology, 39(10), 3480-3487.
Tung, C. W., Wang, C. S., & Chen, S. N. (1999), Histological and electron microscopic study on macrobrachium muscle virus (MMV) infection in the giant freshwater prawn, macrobrachium rosenbergii (. de Man), cultured in Taiwan. Journal of Fish Diseases, 22(4), 319-323.
Udovičić, M., Baždarić, K., Bilić-Zulle, L., & Petrovečki, M. (2007), What we need to know when calculating the coefficient of correlation? Biochemia Medica, 17(1), 10-15.
Wang, W., Lin, H., Xue, C., & Khalid, J. (2004), Elimination of chloramphenicol, sulphamethoxazole and oxytetracycline in shrimp, Penaeus chinensis following medicated-feed treatment. Environment International, 30(3), 367-373.
Wang, Y. B., & Zheng, J. H. (2011), 泰國蝦面臨的最大危害-白點病. 行政院農業委員會水產試驗所電子報, 61.
Wegener, H. C., Aarestrup, F. M., Gerner-Smidt, P., & Bager, F. (1998), Transfer of antibiotic resistant bacteria from animals to man. Acta Veterinaria Scandinavica. Supplementum, 92, 51-57.
Willis, C. (2000), Antibiotics in the food chain: their impact on the consumer. Reviews in Medical Microbiology, 11(3), 153-160.
Wise, R. (2002), Antimicrobial resistance: priorities for action. Journal of Antimicrobial Chemotherapy, 49(4), 585-586.
Yu, C. I., & Song, Y. L. (2000), Outbreaks of taura syndrome in pacific white shrimp penaeus vannamei cultured in Taiwan. Fish Pathology, 35(1), 21-24.
Zuccato, E., Bagnati, R., Fioretti, F., Natangelo, M., Calamari, D., & Fanelli, R. (2001). Environmental loads and detection of pharmaceuticals in Italy Pharmaceuticals in the Environment (pp. 19-27): Springer.