研究生: |
陳湘怡 Chen, Hsiang-Yi |
---|---|
論文名稱: |
一種利用離子佈植技術薄化絕緣層上矽之新穎無接面場效電晶體之設計與模擬分析 Simulation and Design of A Novel Junctionless SOI FET With Channel Thinning By Ion Implantation (CTIFET) |
指導教授: |
王水進
Wang, Shui-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 無接面式 、絕緣層上矽 、超薄通道 、場效電晶體 、TCAD模擬 、離子佈植 、反相器 、靜態隨機存取記憶體 |
外文關鍵詞: | Junctionless, Silicon on insulator, Field-effect transistor, Ion implantation, TCAD Simulation |
相關次數: | 點閱:129 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體工業持續發展,為了達到提升數位積體電路的速度、功能與降低製作成本要求下,元件尺寸微縮卻逐漸衍生諸多的短通道效應,造成元件特性劣化,因此,SOI基板逐漸受到重視。於符合超薄通道之需求,一般需要SOI基板之矽層厚度"≤ 25 nm" 且具高均勻度。然隨矽層厚度越薄製備愈形困難、成本越高。為改善此問題,本論文提出一種利用離子佈植技術來實現超薄通道之新穎場效電晶體,簡稱CTIFET (channel thinning by ion implantation),藉由離子佈植技術精準地控制雜質深度、範圍與劑量,有效減少通道厚度同時保有平坦化的源極/通道/汲極結構,使FD-SOI製程不受SOI基板矽層厚度的限制,且可增加閘極對通道的控制能力與降低關閉狀態之漏電電流,有效改善元件短通道特性,提供一新穎超薄通道電晶體製備方法。此外,亦可將原先90 nm製程技術節點特性提升至28 nm製程技術節點特性,除具新穎性與進步性外,亦具應用價值。
本論文所使用之半導體元件模擬軟體為Sentaurus TCAD,其中元件所設定的供應電壓與等效氧化層厚度等參數參考國際半導體技術指標(International Technology Roadmap for Semiconductors, ITRS) 90 nm製程技術節點之預測為主,為使分析結果更接近實際狀況,本論文採用Sentaurus的SPROCESS軟體進行製程的模擬。
本研究首先針對CTIFET元件於離子佈植時所使用到的重要參數、不同摻雜型態以及佈植範圍作元件電特性分析。結果顯示在離子佈植技術下以晶圓無旋轉方式且採用能量9.5 keV、劑量8×1013cm-2、角度60度角以及氮氣環境(1050 oC、5 s)下的快速熱退火能夠獲得較佳的靜電特性。於適當的離子佈植控制下可使元件通道厚度薄化外,亦有助提升CTIFET的元件電特性。再者,於適當的離子佈植長度下,除可進一步優化元件之開關特性外,亦可大幅改善短通道效應以及降低串聯電阻。此外,我們亦與絕緣層上矽超薄通道場效電晶體及掘入式電晶體進行短通道特性的比較。結果顯示,不論在90 nm或是28 nm技術節點,本論文所提出CTIFET元件除製程簡易外亦具較佳的電特性。
最後,本研究也評估CTIFET應用於反相器及6T靜態隨機存取記憶體的表現。於反相器應用方面,模擬結果顯示元件面積尺寸對於其雜訊邊界有較大之影響,n/p-CTIFET的匹配程度對應用特性扮演極重要腳色。本元件n/p-CTIFET優異之電性對稱性及良好的閘極控制能力,使其雜訊邊界高達529 mV。於6T-SRAM方面,改變供應電壓或記憶體單元尺寸皆可優化其讀寫效能和提高穩定性,然而,此舉亦將改變電路之操作速度以及消耗功率。本元件n/p-CTIFET通道開關能力匹配性佳,因此其雜訊邊界無內縮現象,穩定性極佳,RSNM值與WSNM值分別為228 mV、461 mV。於元件結構參數選擇上,除需在讀寫間性能取捨外,亦必須考慮其於操作速度及消耗功率上之代價以取得最佳的平衡。
不論是於靜電特性或數位電路應用上,本論文所提出具新穎性、平面式之CTIFET元件均較傳統絕緣層上矽超薄通道場效電晶體及掘入式電晶體更優異之特性。本論文所提出CTIFET元件結構設計與電特性之模擬分析,具新穎性與進步性,可供半導體產業進行最適化製程之開發及更先進積體電路之應用參考。
In this study, a junctionless (JL) SOI FET with channel thinning by ion implantation (CTI), called CTIFET is proposed for the first time and its application to inverter and 6T-SRAM are presented. Simulation results based on Sentaurus TCAD are presented and discussed. It reveals that the proposed device which has channel thickness reduced from 25 nm to below 10 nm. CTIFET shows the lowest values in Ioff, SS and DIBL. Similar improvement in device performance is also obtained from p channel devices. As compared to ultra-thin body FET (UTBFET) and recessed-channel FET (RCFET) with a 10-nm-thick silicon channel, could significantly increase Ion, suppress Ioff, and reduce SS by about 3.4%, 81.2%, and 2.9%, respectively.
In addition, the CMOS inverter based on CTIFET. A noise margin as high as 529 mV is obtained. And 6T-SRAM shows an SNM at Vdd=1.2 V as high as 228 and 461 mV during read and write operation, respectively. The inverter and 6T-SRAM performances are attributed to the considerable harvest of gate control originating from channel thinning through ion implantation.
[1] B. Lojek, History of semiconductor engineering. Springer, 2007.
[2] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials today, vol. 9, no. 6, pp. 20-25, Jun. 2006.
[3] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
[4] D. A. Neamen, Semiconductor physics and devices: basic principles, Fourth ed. New York, NY: McGraw-Hill, 2012.
[5] S. Cristoloveanu, "Silicon on insulator technologies and devices: from present to future," Solid-State Electronics, vol. 45, no. 8, pp. 1403-1411, Aug. 2001.
[6] S. Cristoloveanu and S. Li, Electrical characterization of silicon-on-insulator materials and devices. Springer Science & Business Media, 2013.
[7] R.-H. Yan, A. Ourmazd, and K. F. Lee, "Scaling the Si MOSFET: From bulk to SOI to bulk," IEEE Transactions on Electron Devices, vol. 39, no. 7, pp. 1704-1710, Jul. 1992.
[8] J.-P. Colinge, Silicon-on-insulator technology: materials to VLSI: materials to VLSI. Springer Science & Business Media, 2004.
[9] M. Bruel, B. Aspar, and A.-J. Auberton-Hervé, "Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding," Japanese Journal of Applied Physics, vol. 36, no. Part 1, No. 3B, pp. 1636-1641, Mar. 1997.
[10] G. M. Cohen and D. K. Sadana, "Method for patterning a buried oxide thickness for a separation by implanted oxygen (simox) process," United States Patent 6300218B1, 2001.
[11] D. Godbey, H. Hughes, and F. Kub, "Advanced silicon on insulator technology," presented at the The Second National Technology Transfer Conference and Exposition, Dec., 1991.
[12] C. A. Desmond-Colinge and U. Gösele, "Wafer-bonding and thinning technologies," MRS bulletin, vol. 23, no. 12, pp. 30-34, Dec. 1998.
[13] W. Maszara, G. Goetz, T. Caviglia, A. Cserhati, G. Johnson, and J. McKitterick, "Wafer bonding for SOI," MRS Online Proceedings Library Archive, vol. 107, Feb. 1987.
[14] S. Walter, N. Bich-Yen, A. Frederic, G. Christophe, and M. Christophe, "Ultra-thin body & buried oxide SOI substrate development and qualification for fully depleted SOI device with back bias capability," Solid-State Electronics, vol. 117, pp. 2-9, Mar. 2016.
[15] B. Ghyselen, J.-M. Hartmann, T. Ernst, C. Aulnette, B. Osternaud, Y. Bogumilowicz, A. Abbadie, P. Besson, O. Rayssac, and A. Tiberj, "Engineering strained silicon on insulator wafers with the Smart CutTM technology," Solid-state electronics, vol. 48, no. 8, pp. 1285-1296, Aug. 2004.
[16] D. Chao, D. Shu, S. Hung, W. Hsieh, and M.-J. Tsai, "Investigation of silicon-on-insulator (SOI) substrate preparation using the smart-cutTM process," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 237, no. 1-2, pp. 197-202, Aug. 2005.
[17] 廣州矽峰電子科技有限公司. (2010, Oct.). SOI技術原理與應用 [Online]. Available: http://www.gzgfeng.com/soi/98.html
[18] B. R. Song, "無接面電晶體平台選擇, SOI 或 bulk Si?," in NANO COMMUNICATION vol. 24, ed, 2017, pp. 27-28.
[19] C. Lin, H.-C. Lin, and T.-Y. Huang, "Poly-Si Junctionless Device Technology," in NANO COMMUNICATION vol. 21, ed, 2014, pp. 20-26.
[20] E. Rauly, B. Iñiguez, and D. Flandre, "Investigation of deep submicron single and double gate SOI MOSFETs in accumulation mode for enhanced performance," Electrochemical and Solid-State Letters, vol. 4, no. 3, pp. G28-G30, Jan. 2001.
[21] C.-W. Lee, D. Lederer, A. Afzalian, R. Yan, N. Dehdashti, W. Xiong, and J.-P. Colinge, "Comparison of contact resistance between accumulation-mode and inversion-mode multigate FETs," Solid-State Electronics, vol. 52, no. 11, pp. 1815-1820, Nov. 2008.
[22] R. Yan, D. Lynch, T. Cayron, D. Lederer, A. Afzalian, C.-W. Lee, N. Dehdashti, and J. Colinge, "Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations," Solid-State Electronics, vol. 52, no. 12, pp. 1872-1876, Dec. 2008.
[23] M.-S. Yeh, Y.-C. Wu, M.-H. Wu, Y.-R. Jhan, M.-H. Chung, and M.-F. Hung, "High performance ultra-thin body (2.4 nm) poly-Si junctionless thin film transistors with a trench structure," in 2014 IEEE International Electron Devices Meeting, 2014: IEEE, pp. 26.6.1-26.6.4.
[24] J. P. Colinge, C. W. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, and R. Yu, Junctionless Transistors: Physics and Properties. 2011, pp. 187-200.
[25] Y.-C. Wu and Y.-R. Jhan, 3D TCAD Simulation for CMOS Nanoeletronic Devices. Springer, 2018.
[26] J.-P. Colinge, A. Kranti, R. Yan, I. Ferain, N. D. Akhavan, P. Razavi, C.-W. Lee, R. Yu, and C. Colinge, "A simulation comparison between junctionless and inversion-mode MuGFETs," ECS Transactions, vol. 35, no. 5, pp. 63-72, Jan. 2011.
[27] E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani, N. Shen, N. Singh, G. Lo, and D. Kwong, "Numerical investigation on the junctionless nanowire FET," Solid-State Electronics, vol. 71, pp. 13-18, May 2012.
[28] B.-H. Lee, J. Hur, M.-H. Kang, T. Bang, D.-C. Ahn, D. Lee, K.-H. Kim, and Y.-K. Choi, "A vertically integrated junctionless nanowire transistor," Nano letters, vol. 16, no. 3, pp. 1840-1847, Feb. 2016.
[29] J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, "Plasma source ion‐implantation technique for surface modification of materials," Journal of Applied Physics, vol. 62, no. 11, pp. 4591-4596, Aug. 1987.
[30] P. D. Townsend, J. C. Kelly, and N. E. W. Hartley, Ion implantation, sputtering and their applications. Academic Press London, 1976.
[31] T. Chao, Introduction to semiconductor manufacturing technology. SPIE PRESS, 2001.
[32] A. Merabet, "Diffusion and segregation of arsenic and boron in polysilicon/silicon systems during rapid thermal annealing," Journal of alloys and compounds, vol. 382, no. 1-2, pp. 300-304, Nov. 2004.
[33] K. Matsuda, T. Kawai, M. Naitoh, and M. Aoki, "A high current ion implanter machine," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 6, no. 1, pp. 35-38, Jan. 1985.
[34] T. Sakurai and A. R. Newton, "Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas," IEEE Journal of solid-state circuits, vol. 25, no. 2, pp. 584-594, Apr. 1990.
[35] S. Dutta, S. M. Shetti, and S. L. Lusky, "A comprehensive delay model for CMOS inverters," IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 864-871, Aug. 1995.
[36] C. Shin, Variation-aware advanced CMOS devices and SRAM. Springer, 2016.
[37] E. Seevinck, F. J. List, and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells," IEEE Journal of solid-state circuits, vol. 22, no. 5, pp. 748-754, Oct. 1987.
[38] A. Teman, "Dynamic stability and noise margins of SRAM arrays in nanoscaled technologies," in 2014 IEEE Faible Tension Faible Consommation, 2014: IEEE, pp. 1-5.
[39] Q. Chen, S. Balasubramanian, C. Thuruthiyil, M. Gupta, V. Wason, N. Subba, J.-S. Goo, P. Chiney, S. Krishnan, and A. B. Icel, "Critical current (ICRIT) based SPICE model extraction for SRAM cell," in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008: IEEE, pp. 448-451.
[40] H. Iwai, "Future of nano CMOS technology," Solid-State Electronics, vol. 112, pp. 56-67, Oct. 2015.
[41] R. R. Schaller, "Technological innovation in the semiconductor industry: a case study of the international technology roadmap for semiconductors (ITRS)," George Mason University Fairfax, VA, 2004.
[42] S.-T. R. Corp. [Online]. Available: http://www.summit-tech.com.tw/
[43] T. Sentaurus, "Manuals, Synopsys Inc," Mountain View, CA, vol. 94043, 2016.
[44] S. Kaundal and A. K. Rana, "Threshold voltage modeling for a Gaussian-doped junctionless FinFET," Journal of Computational Electronics, vol. 18, no. 1, pp. 83-90, Mar. 2019.
[45] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics reliability, vol. 42, no. 4-5, pp. 583-596, Apr. 2002.
[46] G. Ghibaudo, "New method for the extraction of MOSFET parameters," Electronics Letters, vol. 24, no. 9, pp. 543-545, Apr. 1988.
[47] O. FrancaSiebel, M. CheremSchneider, and C. Galup-Montoro, "MOSFET threshold voltage: definition, extraction, and some applications," Microelectronics Journal, vol. 43, no. 5, pp. 329-336, May 2012.
[48] S.-J. Wang, 第六章-金氧半場效電晶體(MOSFETs). 2018.
[49] H. Xiao, Introduction to Semiconductor Manufacturing Technology. Pearson Taiwan, 2007.
[50] M. Goorsky, Ion Implantation. 2012.
[51] 張文亮, "New Trends in Ultra-shallow Junction Formation and Low Energy Ion Implantation " in NANO COMMUNICATION vol. 19, ed, 2012, pp. 35-44.
[52] C. Park, K. M. Klein, A. F. Tasch, and J. F. Ziegler, "Critical Angles for Channeling of Boron Ions Implanted into Single‐Crystal Silicon," Journal of The Electrochemical Society, vol. 138, no. 7, pp. 2107-2115, Jul. 1991.
[53] Y. Yamamoto, T. Hidaka, H. Nakamura, H. Sakuraba, and F. Masuoka, "Decananometer surrounding gate transistor (SGT) scalability by using an intrinsically-doped body and gate work function engineering," IEICE transactions on electronics, vol. 89, no. 4, pp. 560-567, Apr. 2006.
[54] D. Ranka, R. K. Yadav, A. K. Rana, and K. Yadav, "Comparative Performance Evaluation of Bulk and FD-SOI MOSFETs Using TCAD," in 2011 International Conference on Devices and Communications (ICDeCom), 2011: IEEE, pp. 1-5.
[55] V. Kilchytska, B. K. Esfeh, C. Gimeno, B. Parvais, N. Planes, M. Haond, J.-P. Raskin, and D. Flandre, "Comparative study of non-linearities in 28 nm node FDSOI and Bulk MOSFETs," in 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), 2017: IEEE, pp. 128-131.
[56] N. Planes, O. Weber, V. Barral, S. Haendler, D. Noblet, D. Croain, M. Bocat, P.-O. Sassoulas, X. Federspiel, and A. Cros, "28nm FDSOI technology platform for high-speed low-voltage digital applications," in 2012 Symposium on VLSI technology (VLSIT), 2012: IEEE, pp. 133-134.
[57] B.-Y. Nguyen, C. Mazuré, D. Delprat, C. Aulnette, N. Daval, F. Andrieu, and O. Faynot, "Overview of FDSOI technology from substrate to device," in 2009 International Semiconductor Device Research Symposium, 2009: IEEE, pp. 1-2.
[58] S. S, A. S, D. V, and C. C S, A Review on Random Dopant Fluctuation Impact on Within-Die Variation. 2017.
[59] M. S. Sarker, M. M. Islam, M. N. K. Alam, and M. R. Islam, "Gate dielectric strength dependent performance of CNT TFET: A tight binding study," in 2016 19th International Conference on Computer and Information Technology (ICCIT), 2016: IEEE, pp. 159-163.
[60] R. Vaddi, S. Dasgupta, and R. Agarwal, "Device and circuit co-design robustness studies in the subthreshold logic for ultralow-power applications for 32 nm CMOS," IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 654-664, Mar. 2010.
[61] A. S. Sedra and K. C. Smith, Microelectronic circuits. New York: Oxford University Press, 1998.
[62] D. Mukherjee, H. K. Mondal, and B. Reddy, "Static noise margin analysis of SRAM cell for high speed application," International Journal of Computer Science Issues (IJCSI), vol. 7, no. 5, p. 175, Sep. 2010.