| 研究生: |
周展言 Chou, Zhan-Yan |
|---|---|
| 論文名稱: |
輕質陶粒混凝土之配比設計與其力學及隔音性能 Acoustic and Mechanical Properties of Lightweight Expanded Clay Aggregate Concrete with Different Mixture Proportioning |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 258 |
| 中文關鍵詞: | 輕質陶粒 、加壓震盪成型 、混凝土配比設計 、聲學性能 、力學性能 |
| 外文關鍵詞: | lightweight expanded clay aggregate (LECA) , compressional vibration molding, concrete mixture proportioning design, acoustic properties, mechanical properties |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於以預鑄式方式生產之產品能在品質上做到有效之控管,預鑄產品的開發已成為一個當前的趨勢。本研究針對新型砌塊製程以加壓震盪成型之砌塊生產工法的產程序進行標準化的設計。透過不同輕質骨材之配比條件下之試驗以決定最佳的配比比例,同時針對輕質陶粒砌塊做力學性能以及聲學性能之分析,來推廣該再生建築材料在未來應用之可行性。
實驗結果藉由抗壓強度、強重比與彈性模數進行砌塊力學性能的分析研究。實驗中分別針對不同密度等級的輕質陶粒骨材進行配比試驗。陶粒骨材共分為三種等級以及三種粒徑,密度等級300級、500級與700級分別為乾堆積密度在200-400、400~600、600~800(kgf/m3)之間的骨材,而三種粒徑分別為細骨材之粒徑小於5mm,中粒徑5~10mm與粗粒徑10~20mm。並針對系粒料作為研究主要之控制變因針對細骨材體積比為0.3、0.5進行強度分析以及音響性能檢測。
實驗試體尺寸受模具尺寸限制將尺寸設定為300 x 300 x 12.5cm,並針對六種配比共36個砌塊進行力學性能分析以及三種配比共75個砌塊做聲學實驗分析。在不同密度等級之選用骨材下,配比測試透過不同的水灰比(w/c)以及顆粒級配進行初始之配比設計。研究中的配比設計參照ACI 221.98<<輕質骨材配比設計標準>>中之體積法以及建議之配比調整方式決定在300級骨材之配比中使用水灰比0.35,而500級與700級則使用水灰比0.32。並針對砌塊製作過程以及實驗結果進行配比建議與研究分析。
研究結果發現透過體積法進行配比設計以及砌塊成型製作過程中的填料次數與水灰比控制能優化產品成型的穩定性。脫模成型砌塊之品質是決定後期抗壓實驗中變異性的一大主因之一。從抗壓實驗中可以發現破化模式主要以錐形剪力破壞為主,配比試驗也透過破壞之斷面推測破壞行為之成因,並在針對水泥量與水灰比的調整進行配比的優化。實驗數據透過應力應變圖詮釋受力之行為,研究發現陶粒砌塊在達到最大破壞應力時部分300級與500級在強度上並沒有應力急遽衰減的行為發生,推測可能該試體具有部分的韌性。從強重比分析當中可以發現對比先前之研究每試體單位重量所提供的強度在體積法的配比下有更好的表現性,並且發現當陶粒密度等級越高時強重比也呈現較高的實驗數據結果。
從聲學分析發現在吸音方面500級在高頻率得聲音具有較好的表現行為,700級則是在中頻率有較好之吸音表現。並推測300級之吸音表現較差之原因為砌塊表面之粗糙度相對較低,聲能量傳遞至試體時粒料空隙間與陶粒的孔隙無法有效消耗透入之能量。但從隔音表現中300級之聲音穿透率較低而呈現較好的隔音表現,而500級與700級反而無法在質量控制段變現出與理論質相符之實驗結果。並推測兩種配比下的試體有過高的粒料間隙使聲能量並沒有被有效的阻隔。
The development of precasting products has become a current trend due to the improved quality control required in the mass production industry. The aim of this study is to standardize the production procedures of a block casting model that undergoes the process of compressional vibration. While conducting mixture trial tests for better proportioning, properties including mechanical and acoustic performance were measured to indicate and promote Lightweight expanded clay aggregates (LECA). Results are analyzed by compressive strength, Strength-to- weight ratio and stiffness with modulus of elasticity. The similar gradations are calculated using volumetric method with different density level of LECA. Density ranging between 200-400(kgf/m3) are represented by grade-300 with grade-500 and grade-700 in similar approach. Three sizes of particles are delivered, with fine aggregate size under 5mm, medium between 5 and 10mm, and large between 10 and 20mm. Volumetric ratio of 0.3,0.5 for fine aggregate are compared through the measurements. The size of the specimens is 300 x 300 x 12.5cm constrained by mold dimensions, with the total of 36 and 75 specimens are tested in mechanical and acoustic experiment respectively. Meanwhile, the proportioning includes different chosen water cement ratio(w/c) besides the similar grading of various aggregate density. w/c of 0.35 is used for grade-300, and 0.32 for grade-500 and grade-700 in the mixture designs. Observation of the block section are used to certify the grading and cement during the mixture design trial. The study concludes that the quality and performances has improved by using volumetric design. Among the stability in compressional vibration molding method and exterior appearance of the designed LECA block.
[1] Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material –An overview. Construction and Building Materials, 170, pp. 757-775.
[2] Alvaro Paul, Sofía Murgadas, José Delpiano, Patricio A. Moreno-Casas, Magdalena Walczak, Mauricio Lopez. (2021). The role of moisture transport mechanisms on the performance of lightweight aggregates in internal curing. Construction and Building Materials, 55, pp. 121-191.
[3] Casey Jones, Daniel Goad, W. Micah Hale. (2020). Examining soaking duration of coarse clay and shale lightweight aggregates for internal curing in conventional concrete. Construction and Building Materials, 249, pp. 118-154.Building Code Requirements for Structural Concrete. (2014). ACI Committee 318.
[4] Keun-Hyeok Yang , Gwang-Hee Kim, Yong-Hwa Choi. (2014). An initial trial mixture proportioning procedure for structural lightweight aggregate concrete. Construction and Building Materials, 55, pp. 431-439.
[5] Niall Holmes, Alex Browne, Christopher Montague. (2014). Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Construction and Building Materials, 73, pp. 195-204.
[6] Sofia Real, M. Glória Gomes, A. Moret Rodrigues, J. Alexandre Bogas. (2016). Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Construction and Building Materials, 121, pp. 460-470.
[7] Ali Abasi, Reza Hassanli, Thomas Vincent, Allan Manalo. (2020). Influence of prism geometry on the compressive strength of concrete masonry. Construction and Building Materials, 264, pp. 120-182.
[8] 施文和、林信宏、林招焯. (2008). 建築物輕質隔間牆隔音性能之研究. 內政部建築研究所
[9] Aggregates for Concrete. (2007). ACI Committee E-701.
[10] Standard Practice for Selecting Proportions for Structural Lightweight Concrete. (1998). ACI Committee 211, 2.
[11] Guide for Structural Lightweight Aggregate Concrete. (2003). ACI Committee 213.
[12] CNS15316 聲學-建築物及建築構件之聲強法隔音量測法(2010).CNS中民國國家標準
[13] CNS9056 聲學-迴響室之吸音量測(2008).CNS中民國國家標準
[14] 內政部混凝土結構設計規範(2011), 內政部營建署
[15] 顏聰, 黃兆龍. (2003). 水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣. 內政部建築研究所. 中華民國節能輕質骨材混凝土推廣協會
[16] 王柏閔. (2019). 輕質陶粒砌塊的抗壓行為-以細小粒料為例. 台南市: 國立成功大學建築研究所
[17] 劉怡君. (2019). 輕質陶粒砌塊的抗壓行為-以中型粒料為例. 台南市: 國立成功大學建築研究所
[18] 楊雅嵐. (2020). 成形製程對粗粒徑輕質陶粒砌塊抗壓強度的影響-以粗粒徑為例. 台南市: 國立成功大學建築研究所
[19] 陳昭儒. (2022). 輕質陶粒混凝土砌塊加壓震盪成型工法之可行性評估-混合粒徑為例. 台南市: 國立成功大學建築研究所