簡易檢索 / 詳目顯示

研究生: 曾鈺軒
Zeng, Yu-Syuan
論文名稱: 週期波溯升高度與波狀堰流之實驗研究
Experimental studies on runup of periodic waves on a slope and undular flows over weirs
指導教授: 楊天祥
Yang, Tian-Shiang
共同指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 週期波溯升高度地形效果造波機波狀堰流
外文關鍵詞: runup of periodic waves, topography effect, wavemaker, undular flows
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中不同種類的水波有時可能造成危險;例如當風暴來襲時的海浪溯升,以及當河川流過一矩形堰時所產生的波動現象。因此在本研究中我們建立一個較小規模的造波實驗系統來探討這兩個現象。我們所建造的擺動式造波系統所產生的波與表面張力-重力波理論大致吻合,並可應用來測試週期波所產生的溯升高度。同時我們在斜坡上放置一三角堤,並改變其位置、高度以及寬度來研究其對溯升高度的影響。此外,我們也使用一穩定循環流水系統來研究當流體通過兩個矩形堰時,所產生的波狀堰流是否可以用波疊加的方式來減弱之。

    在溯升系統的實驗結果顯示,溯升高度有可能因為選擇的三角堤位置與形狀,而放大或減弱。此外,當三角堤的位置較靠近平衡水線時,其影響效果會較強。而在波狀堰流的實驗中,我們發現所產生的波形之最大振幅可以藉由改變堰與堰之間的距離而明顯變化。這些發現除了在本文中可以學理了解之外,更可在未來繼續延伸,以對防災科技之發展有所貢獻。

    In nature events, different types of water waves are sometimes dangerous like the runup of ocean waves in a storm or the occurrence of undulation waves when flow pass a rectangular weir in a river. A relatively small laboratory wave system was established to understand these two phenomena. A paddle-type wavemaker system which generates waves mostly matching the theoretical capillary-gravity waves is used to test the runup of periodic waves on a slope. In this system, we also use a triangular prism barrier with varied position, height and width to affect the runup on the slope. Also, a steady flow system was applied to study the undular flows over weirs, and we attempt to diminish the undulation by wave superposition with two rectangular weirs.

    Results in the runup system show the two possibilities of runup reduction or enhancement with appropriate locations and shapes of the barrier on the slope, and the influence of the barrier would be more significant when locating the barrier closer to the equilibrium water line. Also, the findings in the undular flows over weirs show that the maximum amplitude of undular waves would vary with different distances between weirs.

    摘要................................................... i Abstract ............................................. ii 誌謝 ................................................ iii Contents ............................................. iv List of Tables ...................................... vii List of Figures .................................... viii Nomenclature......................................... xiv Chapter 1. Introduction ............................... 1 1-1. Background ....................................... 1 1-2. Literature Review ................................ 2 1-2-1. Wavemaker ...................................... 2 1-2-2. Beach Topography Perturbation on Wave Runup .... 7 1-2-3. Topography Effects on Wave Amplitude .......... 10 1-2-4. Undular Flows over Submerged Weirs ............ 13 1-3. Objective of This Work .......................... 16 1-4. Outline of This Thesis .......................... 17 Chapter 2. Theoretical Background .................... 18 2-1. Wavemaker Theory ................................ 18 2-1-1. Dispersion Relation and Wave Amplitude ........ 18 2-1-2. Wave Attenuation .............................. 20 2-2. Wave Runup Theory ............................... 22 2-2-1. Dimensional Analysis .......................... 22 2-3. Theory for Topography Effect on Wave Amplitude... 24 2-3-1. Condition for Stationary Lee Waves ............ 24 2-3-2. Dimensional Analysis .......................... 25 Chapter 3. Methodology ............................... 27 3-1. Experimental Setup and Measurement for Wavemaker Experiments 27 3-1-1. Wavemaker Setup ............................... 29 3-2. Experimental Setup for Wave Runup Observations .. 33 3-2-1. Runup of Periodic Waves on a Plane Slope ...... 33 3-2-2. Runup of Periodic Waves on a Slope with a Triangular Barrier ................................... 35 3-3. Experimental Setup for Topographical Effects on Wave Amplitude and Undular Flows over Weirs ............... 36 3.4. Experimental Procedures ......................... 41 3-4-1. Procedures for Wavemaker Experiments .......... 41 3-4-2. Procedures for Runup Experiments .............. 42 3-4-3. Procedures for Steady Flow Experiments ........ 44 3.5. Experimental Uncertainty Analysis ............... 45 Chapter 4. Results and Discussion..................... 49 4-1. Wavemaker ....................................... 49 4-1-1. Wavemaker Performance ......................... 49 4-1-2. Attenuation.................................... 57 4-2. Runup of Periodic Waves on a Beach .............. 58 4-2-1. Runup of Periodic Waves on a Plane Slope ...... 58 4-2-2. Runup of Periodic Waves on a Slope with a Triangular Barrier ................................... 61 4-3. Topography Effect on Wave Amplitude with Varied Distances ............................................ 65 4-4. Undular Flows over Rectangular Weirs ............ 66 Chapter 5. Conclusion ................................ 72 5-1. Concluding Remarks .............................. 72 5-1-1. Wavemaker ..................................... 72 5-1-2. Runup of Periodic Waves on a Beach ............ 72 5-1-3. Undular Flows over Weirs ...................... 73 5-2. Future Work ..................................... 74 5-2-1. Runup of Periodic Waves on a Beach ............ 74 5-2-2. Topography Effects on Wave Amplitude and Undular Weirs Flows .......................................... 74 Appendix ............................................. 75 A-1. More Details in the Experimental Operation ...... 75 Reference ............................................ 77

    1. Wurtele, M.G., R.D. Sharman, and A. Datta, Atmospheric Lee waves. Annual
    Review of Fluid Mechanics, 1996. 28: p. 429-476.
    2. Lilly, D.K., Severe downslope windstorm and aircraft turbulence event
    induced by a mountain wave. Journal of the Atmospheric Sciences, 1978.
    35(1): p. 59-77.
    3. Baines, P.G., Topographic effects in stratified flows. 1995: Cambridge
    University Press.
    4. Billingham, J. and A.C. King, Wave motion. 2000: Cambridge university press.
    5. Ursell, F., R.G. Dean, and Y. Yu, Forced small-amplitude water waves: a
    comparison of theory and experiment. Journal of Fluid Mechanics, 1960.
    7(01): p. 33-52.
    6. Patel, M. and P. Ionnaou, Comparative performance study of paddle-and
    wedge-type wave generators. Journal of Hydronautics, 1980. 14(1): p. 5-9.
    7. Anbarsooz, M., M. Passandideh-Fard, and M. Moghiman, Fully nonlinear
    viscous wave generation in numerical wave tanks. Ocean Engineering, 2013.
    59: p. 73-85.
    8. Hudspeth, R.T. and W. Sulisz, Stokes drift in two-dimensional wave flumes.
    Journal of Fluid Mechanics, 1991. 230: p. 209-229.
    9. Hudspeth, R., et al., TYPE E double-actuated wavemakers. Journal of
    Hydraulic Research, 1994. 32(3): p. 387-400.
    10. Havelock, T., LIX. Forced surface-waves on water. The London, Edinburgh,
    and Dublin Philosophical Magazine and Journal of Science, 1929. 8(51): p.
    569-576.
    11. Biesel, F. and F. Suquet, Les appareils générateurs de houle en laboratoire. La
    houille blanche, 1951(5): p. 723-737.
    12. Hyun, J.M., Theory for hinged wavemakers of finite draft in water of constant
    depth. Journal of Hydronautics, 1976. 10(1): p. 2-7.
    13. HUDSPETH, R. and M. CHEN, 4. 1981 Design curves for hinged
    wave-makers: Theory. J. Hydraul. Div. ASCE. 107: p. 533-552.
    14. Kennard, E., Generation of surface waves by a moving partition. Q. Appl.
    Math, 1949. 7(3): p. 303-312.
    15. Madsen, O.S., Waves generated by a piston-type wavemaker. Coastal
    Engineering Proceedings, 1970. 1(12).
    16. Murray, M.J.C., On the capillary-gravity wavemaker problem. Acta
    Mechanica, 1976. 24(3-4): p. 289-295.
    17. Gilbert, G., D. Thompson, and A. Brewer, Design curves for regular and
    random wave generators. Journal of Hydraulic Research, 1971. 9(2): p.
    163-196.
    18. WEBBER, N. and T. HAVELOCK. The Generation of Periodic Waves in a
    Laboratory Channel: a Comparison between Theory and Experiment. in ICE
    Proceedings. 1977. Thomas Telford.
    19. Benjamin, T.B. and K. Hasselmann, Instability of periodic wavetrains in
    nonlinear dispersive systems [and discussion]. Proceedings of the Royal
    Society of London. Series A. Mathematical and Physical Sciences, 1967.
    299(1456): p. 59-76.
    20. Madsen, O.S., C.C. Mei, and R. Savage, The evolution of time-periodic long
    waves of finite amplitude. Journal of Fluid Mechanics, 1970. 44(01): p.
    195-208.
    21. Madsen, O.S., On the generation of long waves. Journal of Geophysical
    Research, 1971. 76(36): p. 8672-8683.
    22. Dean, R. and R. Dalrymple, 1984Water wave mechanics for engineers and
    scientists. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
    23. De, S. Contributions to the theory of Stokes waves. in Mathematical
    Proceedings of the Cambridge Philosophical Society. 1955. Cambridge Univ
    Press.
    24. Tsuchiya, Y. and M. Yamaguchi, Some considerations on water particle
    velocities of finite amplitude wave theories. Coastal Engineering in Japan,
    1972. 15: p. 43-57.
    25. Skjelbreia, L. and J. Hendrickson, Fifth order gravity wave theory. Coastal
    Engineering Proceedings, 1960. 1(7): p. 10.
    26. Fenton, J.D., A fifth-order Stokes theory for steady waves. Journal of waterway,
    port, coastal, and ocean engineering, 1985. 111(2): p. 216-234.
    27. Larsen, J. and H. Dancy, Open boundaries in short wave simulations—a new
    approach. Coastal Engineering, 1983. 7(3): p. 285-297.
    28. Brorsen, M. and J. Larsen, Source generation of nonlinear gravity waves with
    the boundary integral equation method. Coastal Engineering, 1987. 11(2): p.
    93-113.
    29. Li, Y., et al., Numerical modeling of Boussinesq equations by finite element
    method. Coastal Engineering, 1999. 37(2): p. 97-122.
    30. Wei, G., J.T. Kirby, and A. Sinha, Generation of waves in Boussinesq models
    using a source function method. Coastal Engineering, 1999. 36(4): p. 271-299.
    31. Liu, S.-X., B. Teng, and Y.-X. Yu, Wave generation in a computation domain.
    Applied mathematical modelling, 2005. 29(1): p. 1-17.
    32. Peregrine, D.H., Long waves on a beach. Journal of fluid mechanics, 1967.
    27(04): p. 815-827.
    33. Madsen, P.A., R. Murray, and O.R. Sørensen, A new form of the Boussinesq
    equations with improved linear dispersion characteristics. Coastal engineering,
    1991. 15(4): p. 371-388.
    34. Nwogu, O., Alternative form of Boussinesq equations for nearshore wave
    propagation. Journal of waterway, port, coastal, and ocean engineering, 1993.
    119(6): p. 618-638.
    35. Lin, P. and P.L.-F. Liu, A numerical study of breaking waves in the surf zone.
    Journal of fluid mechanics, 1998. 359: p. 239-264.
    36. Li, B. and C.A. Fleming, Three-dimensional model of Navier-Stokes equations
    for water waves. Journal of waterway, port, coastal, and ocean engineering,
    2001. 127(1): p. 16-25.
    37. Apsley, D. and W. Hu, CFD simulation of two‐and three‐dimensional freesurface
    flow. International journal for numerical methods in fluids, 2003. 42(5):
    p. 465-491.
    38. Hudspeth, R.T., et al., TYPE E double-actuated wavemakers. Journal of
    Hydraulic Research, 1994. 32(3): p. 387-400.
    39. 王冠閔, 斜坡地形變化對孤立波溯升高度的影響. 成功大學機械工程學系
    學位論文, 2005: p. 1-58.
    40. Carrier, G. and H. Greenspan, Water waves of finite amplitude on a sloping
    beach. J. Fluid Mech, 1958. 4(1): p. 97-109.
    41. Carrier, G.F., Gravity waves on water of variable depth. Journal of Fluid
    Mechanics, 1966. 24(04): p. 641-659.
    42. Lautenbacher, C.C., Gravity wave refraction by islands. Journal of Fluid
    Mechanics, 1970. 41(03): p. 655-672.
    43. Spielvogel, L.Q., Single-wave run-up on sloping beaches. Journal of Fluid
    Mechanics, 1976. 74(04): p. 685-694.
    44. Synolakis, C.E., The runup of solitary waves. Journal of Fluid Mechanics,
    1987. 185: p. 523-545.
    45. Kânoglu, U. and C.E. Synolakis, Long wave runup on piecewise linear
    topographies. Journal of Fluid Mechanics, 1998. 374: p. 1-28.
    46. Yu, J. and C.C. Mei, Do longshore bars shelter the shore? Journal of Fluid
    Mechanics, 2000. 404: p. 251-268.
    47. Li, Y. and F. Raichlen, Solitary wave runup on plane slopes. Journal of
    Waterway, Port, Coastal, and Ocean Engineering, 2001. 127(1): p. 33-44.
    48. Pedersen, G. and B. Gjevik, Run-up of solitary waves. Journal of fluid
    mechanics, 1983. 135: p. 283-299.
    49. Langsholt, M., Experimental study of wave run-up. Master's thesis. Dept.
    Mathematics, University of Oslo, 1981.
    50. Hall Jr, J.V. and G.M. Watts, Laboratory investigation of the vertical rise of
    solitary waves on impermeable slopes. 1953, DTIC Document.
    51. Kim, S.K., P.L.-F. Liu, and J.A. Liggett, Boundary integral equation solutions
    for solitary wave generation, propagation and run-up. Coastal Engineering,
    1983. 7(4): p. 299-317.
    52. Liu, P.L.-F., et al., Runup of solitary waves on a circular island. Journal of
    Fluid Mechanics, 1995. 302: p. 259-285.
    53. Lin, P., K.-A. Chang, and P.L.-F. Liu, Runup and rundown of solitary waves
    on sloping beaches. Journal of waterway, port, coastal, and ocean engineering,
    1999. 125(5): p. 247-255.
    54. Chang, K.-A. and P.L.-F. Liu, Velocity, acceleration and vorticity under a
    breaking wave. Physics of Fluids (1994-present), 1998. 10(1): p. 327-329.
    55. Watts, P., Tsunami features of solid block underwater landslides. Journal of
    waterway, port, coastal, and ocean engineering, 2000. 126(3): p. 144-152.
    56. Baldock, T. and D. Huntley, Long–wave forcing by the breaking of random
    gravity waves on a beach. Proceedings of the Royal Society of London. Series
    A: Mathematical, Physical and Engineering Sciences, 2002. 458(2025): p.
    2177-2201.
    57. Gedik, N., E. Irtem, and S. Kabdasli, Laboratory investigation on tsunami
    run-up. Ocean Engineering, 2005. 32(5): p. 513-528.
    58. Irtem, E., et al., Coastal forest effects on tsunami run-up heights. Ocean
    Engineering, 2009. 36(3): p. 313-320.
    59. Hunt, I.A., Design of seawalls and breakwaters. Journal of Waterways and
    Harbours Division, 1959. 85: p. 123-152.
    60. Roos, A. and J.A. Battjes, Characteristics of flow in run-up of periodic waves.
    Coastal Engineering Proceedings, 1976. 1(15).
    61. Ogawa, Y. and N. Shuto, Run-up of periodic waves on beaches of non-uniform
    slope. Coastal Engineering Proceedings, 1984. 1(19).
    62. Guza, R. and E.B. Thornton, Swash oscillations on a natural beach. Journal of
    Geophysical Research: Oceans (1978–2012), 1982. 87(C1): p. 483-491.
    63. Holman, R., Extreme value statistics for wave run-up on a natural beach.
    Coastal Engineering, 1986. 9(6): p. 527-544.
    64. Yang, T.S. and Liang, W.L., Suppression of nonlinear forced waves by input
    shaping. Wave Motion, 2003. 37(2): p. 101-117.
    65. Akylas, T., Nonlinear forced wave phenomena. Nonlinear Wave Interactions in
    Fluids, ASME, New York, 1988: p. 157-63.
    66. Wu, T., Generation of upstream advancing solitons by moving disturbances.
    Journal of fluid mechanics, 1987. 184: p. 75-99.
    67. Kruskal, M.D. and H. Segur, Asymptotics beyond all orders in a model of
    crystal growth. Studies in Applied Mathematics, 1991. 85(2): p. 129-181.
    68. Segur, H. Asymptotics beyond all orders. in Army Research Office,
    Transactions of the Fifth Army Conference on Applied Mathematics and
    Computing p 369-376(SEE N 89-21490 14-59). 1988.
    69. Segur, H. and M.D. Kruskal, Nonexistence of small-amplitude breather
    solutions in phi 4 theory. Physical review letters, 1987. 58(8): p. 747.
    70. Yang, T.-S., Nonlinear interaction of long-wave distrubances with short-scale
    oscillations in stratified flows. 1996, PhD Massachusetts Institute of
    Technology.
    71. Yang, T.-S., On traveling-wave solutions of the Kuramoto-Sivashinsky
    equation. Physica D: Nonlinear Phenomena, 1997. 110(1): p. 25-42.
    72. Yang, T.-S. and W.L. Kath, Radiation loss of dispersion-managed solitons in
    optical fibers. Physica D: Nonlinear Phenomena, 2001. 149(1): p. 80-94.
    73. Boyd, J.P., Weakly nonlocal solitary waves and beyond-all-orders asymptotics.
    1998: Springer.
    74. Akylas, T. and T.-S. Yang, On short-scale oscillatory tails of long-wave
    disturbances. Studies in applied mathematics, 1995. 94(1): p. 1-20.
    75. Yang, T.-S. and T. Akylas, Finite-amplitude effects on steady lee-wave
    patterns in subcritical stratified flow over topography. Journal of Fluid
    Mechanics, 1996. 308: p. 147-170.
    76. Su, S.P. and Yang, T.S., Suppression of nonlinear forced waves by
    error-insensitive input shaping. Journal of the Chinese Society of Mechanical
    Engineers, 2002. 23(6): p. 507-516.
    77. Djordjevic, V.D. and L.G. Redekopp, Transcritical, Shallow-water Flow over
    Compact Topography. Wave Motion, 1992. 15(1): p. 1-22.
    78. Castro-Orgaz, O. and H. Chanson, Near-critical free-surface flows: real fluid
    flow analysis. Environmental fluid mechanics, 2011. 11(5): p. 499-516.
    79. Chanson, H., Free-surface flows with near-critical flow conditions. Canadian
    Journal of Civil Engineering, 1996. 23(6): p. 1272-1284.
    80. Chanson, H. and J.S. Montes, Characteristics of undular hydraulic jumps:
    experimental apparatus and flow patterns. Journal of hydraulic engineering,
    1995. 121(2): p. 129-144.
    81. Montes, J. and H. Chanson, Characteristics of undular hydraulic jumps:
    experiments and analysis. Journal of Hydraulic Engineering, 1998. 124(2): p.
    192-205.
    82. Wu, S. and N. Rajaratnam, Submerged flow regimes of rectangular
    sharp-crested weirs. Journal of Hydraulic Engineering, 1996. 122(7): p.
    412-414.
    83. Murray, M.J., On the linear capillary-gravity wave problem. Acta Mechanica,
    1975. 23(3-4): p. 247-259.
    84. Hunt, J., Viscous damping of waves over an inclined bed in a channel of finite
    width. La Houille Blanche, 1952. 7(6): p. 836-842.
    85. Munson, B.R., D.F. Young, and T.H. Okiishi, Fundamentals of fluid mechanics.
    1990: New York.
    86. 林宇銜, 孔隙斜坡底床反射波之實驗研究. 成功大學水利及海洋工程學系
    學位論文, 2003: p. 1-42.
    87. Castro, I.P. and W.H. Snyder, Experiments on wave breaking in stratified flow
    over obstacles. Journal of Fluid Mechanics, 1993. 255: p. 195-211.
    88. Yeung, R. and S. Sphaier. Wave-interference effects on a floating body in a
    towing tank. in International Symposium on Practical Design of Ships and
    Mobile Units (PRADS), 4th. 1900.
    89. Gad-el-Hak, M., The water towing tank as an experimental facility.
    Experiments in fluids, 1987. 5(5): p. 289-297.
    90. Anagnostopoulos, E. and J. Gerrard, A towing tank with minimal background
    motion. Journal of Physics E: Scientific Instruments, 1976. 9(11): p. 951.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE