簡易檢索 / 詳目顯示

研究生: 陳柏廷
Chen, Po-Ting
論文名稱: 表面波之位移場量在橫斷面等向性分層介質的行為探討
Propagation of surface waves in a layered half-space with transversely isotropic constituents under a time-harmonic load
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 表面波橫斷面等向性交換定理分層介質
外文關鍵詞: surface waves, transverse isotropy, reciprocity, layered medium
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著地震學的成熟,學者開始遍尋能夠量化地震能量的方法,在認定地震必然發生的前提下,結合其他領域如地質學以評估各地的危害程度,此重要的依據即為本文探討的地震表面波。相較以往各向同性介質的波傳假設,自然界的沉積岩會隨著深度方向有所差異,因此本文以橫斷面等向性材料模擬廣大的地球表面,其中除了岩層的基底還包含了一層較鬆軟的土壤作為導引層,並考慮地震發生後是以點波源的形式,向四周發出時諧的擾動。本文首先透過交換定理,推導得出表面波的位移解,其遠場行為與既有文獻相比並無差異,接著藉由實際數值的材料參數,發現較大的彈性模數C33以及較小的彈性模數C13、C44皆能降低因垂直載重所引發之位移場,最後引入超材料的導引層進行分析,結果顯示即使是等向性的材料,仍可以憑著極端特性達到預期的目標。

    We investigate the surface wave field generated by a time-harmonic point load, which is applied in a finite-thickness layer joined to a half-space. In this thesis, both the top layer and the semi-infinite space are considered to be transversely isotropic, in a simulation of sediments where seismic waves travel. Firstly, closed-formed solutions of surface waves are derived from elastodynamic reciprocity theorem. The far-field motion obtained by the method is identical to that of the existing literature. Secondly, the effects on the propagation of surface waves in a transversely isotropic domain are numerically analyzed. We find that a greater value of elastic modulus C33 and smaller values of elastic modulus C13, C44 are able to attenuate the displacement field caused by a normal load. Lastly, metamaterials with negative Poisson’s ratio and with extremely low shear rigidity are considered in the wave phenomena. The results suggest that even isotropic media can still achieve some desired objectives with a top layer of extreme properties.

    中文摘要 i Abstract iii 誌謝 vii 目錄 ix 表目錄 xi 圖目錄 xiii 符號 1 第一章 緒論 3 1.1 文獻回顧 3 1.2 研究動機 4 1.3 論文簡介 5 第二章 地震波與彈性波傳理論 7 2.1 地震波傳形式 7 2.2 等向性介質的波傳行為 10 2.2.1 平衡方程式與Helmholtz理論 10 2.2.2 雷利波 13 2.2.3 洛夫波 17 第三章 簡諧載重作用於分層半空間的波傳分析 21 3.1 橫斷面等向性材料中的自由表面波 21 3.1.1 橫斷面等向性介質 21 3.1.2 分層半空間(layered half-space) 24 3.1.3 位移通解推導 25 3.1.4 等向性分層介質 37 3.2 表面波源問題與交換定理 38 3.3 點載重下的遠場解析解 40 第四章 分層介質之材料參數數值分析 47 4.1 與均質介質的解答比較 47 4.2 橫斷面等向半空間 50 4.2.1 異向性分析 50 4.2.2 全域場量分佈 54 4.3 等向性覆蓋層與半空間 55 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 參考文獻 65 附錄A:橫斷面等向性圓柱中的縱向波 69

    Abubakar, I., Free vibrations of a transversely isotropic plate, Quart. J. Mech. Appl. Math. 15: 129-136 (1962).

    Achenbach, J. D., Calculation of wave fields using elastodynamic reciprocity, Int. J. Solids Struc. 37: 7043-7053 (2000).

    Achenbach, J. D., Lamb waves as thickness vibrations superimposed on a membrane carrier wave, J. Acoust. Soc. Am. 103(5): 2283-2286 (1998).

    Achenbach, J. D., Reciprocity in Elastodynamics, Cambridge University Press (2003).

    Achenbach, J. D., Wave Propagation in Elastic Solids, North Holland (1973).

    Achenbach, J. D. and Keshava, S. P., Free waves in a plate supported by a semi-infinite continuum, J. Appl. Mech. 34: 397-404 (1967).

    Arfken, G. and Weber, H., Mathematical Methods for Physicists, Academic Press (2005).

    Asundi, A. and Choi, A. Y. N., Fiber metal laminates: An advanced material for future aircraft, J. Mater. Process. Technol. 63: 384-394 (1997).

    Bertoldi, K., Vitelli, V., Christensen, J. and van Hecke M., Flexible mechanical metamaterials, Nat. Rev. Mater. 2: 1-11 (2017).

    Betti, E., Teoria dell'elasticità, Nuovo Cimento 7-10 (1872).

    Bückmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M., An elasto-mechanical unfeelability cloak made of pentamode metamaterials, Nat. Commun. 5: 1-6 (2014).

    Chimenti, D. E., Guided waves in plates and their use in materials characterization, Appl. Mech. Rev. 50: 247-284 (1997).

    de Hoop, A. T., Handbook of Radiation and Scattering of Waves, Academic Press, London (1995).

    Dvorak, G. J., Micromechanics of Composite Materials, Springer (2013).

    Eason, G., On the torsional impulsive loading of an elastic half-space, Quart. J. Mech. Appl. Math. 17: 279-292 (1964).

    Fong, K. L. J., A study of curvature effects on guided elastic waves (Ph.D. thesis), Imperial College London (2005).

    Hill, R., Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior, J. Mech. Phys. Solids 12: 199 (1964).

    Kulhánek, O., Anatomy of Seismograms, Elsevier (1990).

    Kulkarni, S. S. and Achenbach, J. D., Application of the reciprocity theorem to determine line-load-generated surface waves on an inhomogeneous transversely isotropic half-space, Wave Motion 45: 350-360 (2008).

    Lamb, H., On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. A203: 1-42 (1904).

    Love, A. E. H., Some Problem of Geodynamics, Cambridge University Press (1911).

    Miller, G. F. and Pursey, H., The field and radiation impedance of mechanical radiatiors on the free surface of a semi-infinite isotropic solid, Proc. R. Soc. A223: 521-541 (1954).

    Milton, G. W. and Cherkaev, A. V., Which elasticity tensors are realizable?, J. Eng. Mater. Technol. 117(4): 483-493 (1995).

    Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New J. Phys. 18(8): 083041 (2016).

    Nagy, P. B., Longitudinal guided wave propagation in a transversely isotropic rod immersed in fluid, J. Acoust. Soc. Am. 98: 454-457 (1995).

    Payton, R. G., Elastic Wave Propagation in Transversely Isotropic Media, The Hague: Martinus Nijhoff (1983).

    Pekeris, C. L., The seismic surface pulse, Proc. Natl. Acad. Sci. U.S.A. 41: 469-480 (1955).

    Phan, H., Cho, Y. and Achenbach, J. D., Application of reciprocity theorem to scatteing of surface waves by a cavity, Int. J. Solids Struct. 50: 4080-4088 (2013).

    Phan, H., Cho, Y., Le, Q. H., Pham, C. V., Nguyen, H. T. L., Nguyen, P. T. and Bui, T. Q., A closed-form solution to propagation of guided waves in a layered half-space under a time-harmonic load: An application of elastodynamic reciprocity, Ultrasonics 96: 40-47 (2019).

    Rahman, M. and Barber, J. R., Exact expressions for the roots of the secular equation for Rayleigh waves, J. Appl. Mech. 62(1): 250-252 (1995).

    Rajapakse, R. K. N. D. and Wang, Y., Green’s functions for transversely isotropic elastic half-space, J. Eng. Mech. 119(9): 1724-1746 (1993).

    Rayleigh, L., On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 17: 4-11 (1885).

    Rayleigh, L., Some general theorems relating to vibration, Lond. Math. Soc. Proc. 4: 366-368 (1873).

    Rose, J. L., Ultrasonic Guided Waves in Solid Media, Cambridge University Press (2014).

    Schenk, M. and Guest, S. D., Geometry of Miura-folded metamaterials, Proc. Natl. Acad. Sci. U.S.A. 110(9): 3276-3281 (2013).

    Stoneley, R., Elastic waves at the surface of separation of two solids, Proc. R. Soc. Lond. Ser. A 106: 416-428 (1924).

    Thomsen, L., Weak elastic anisotropy, Geophysics 51(10): 1954-1966 (1986).

    Tiersten, H. F., Elastic surface waves guided by thin films, J. Appl. Phys. 40: 770-789 (1969).

    Tsvankin, I., Seismic Signatures and Analysis of Reflection Data in Anisotropic
    Media, Society of Exploration Geophysicists (2012).

    Watson, L. and Wijk, K., Resonant ultrasound spectroscopy of horizontal
    transversely isotropic samples, J. Geophys. Res. Solid Earth 120(7): 4887-4897 (2015).

    Woods, R. D., Screening of surface waves in soils, J. Soil Mech. Founds Div. Am. Soc. Civ. Engrs. 94, 951-79 (1968).

    Worlton, D. C., Ultrasonic testing with Lamb waves, Non-Destr. Test 15: 218-222 (1957).

    何瑞堂,具雷利波頻散效應之地震超材料於橫斷面等向性介質之設計與模擬,成功大學土木工程學系碩士論文 (2019)。

    郭典愷,洛夫波於橫斷面等向性介質與地震超材料之波傳互制行為,成功大學土木工程學系碩士論文 (2019)。

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE