簡易檢索 / 詳目顯示

研究生: 鄭鈞
Cheng, Chun
論文名稱: 應用Reissner混合變分原理有限層殼法於功能性壓電材料中空圓柱殼承受電彈荷載之靜態耦合分析
RMVT-Based Finite Cylindrical Layer Methods for the Coupled Static Analysis of Functionally Graded Piezoelectric Circular Hollow Cylinders under Electro-Mechanical Loads
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 42
中文關鍵詞: 電彈耦合分析有限圓柱層殼法功能性材料壓電材料中空圓柱Reissner混合變分原理靜態分析
外文關鍵詞: coupled electro-elastic analysis, finite cylindrical layer methods, functionally graded materials, piezoelectric cylinders, Reissner’s mixed variational theorem, static
相關次數: 點閱:192下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展基於Reissner混合變分原理(Reissner’s mixed variational theorem,RMVT)的有限圓柱層殼法(finite cylindrical layer methods,FCLMs)歸一理論,探討應用於具簡支承邊界條件,單層、雙層及多層功能性壓電材料(functionally graded piezoelectric material,FGPM)組成的中空圓柱殼,在表面開放和封閉迴路條件下,殼承受電彈耦合荷載之靜態分析。文中考慮四種不同形式的電彈荷載,分別作用於中空圓柱殼的內、外表面。分析時,將中空圓柱殼切割成有限數量的圓柱殼層,並假設中空圓柱殼的材料性質沿著厚度方向呈指數變化。三角函數及Lagrange多項式函數分別用來內插各主變數在面內(in-plane)及厚度方向之變化。此外,沿著厚度方向展開的變數,其階數可以自由選擇,可以為線性(linear)、二次(quadratic)及三次(cubic)。文中亦將進行多層FGPM中空圓柱殼承受電彈荷載作用下之靜態電彈耦合行為之參數分析與綜合比較。

    A unified formulation of Reissner’s mixed variational theorem-based finite cylindrical layer methods is developed for the static analysis of simply-supported, multilayered functionally graded piezoelectric material (FGPM) circular hollow cylinders. The material properties of the cylinder are assumed to obey an exponent-law exponentially varying through the thickness coordinate of this. The trigonometric functions and Lagrange polynomials are used to interpolate the in-surface and thickness variations of the primary variables of each individual layer, respectively. The coupled electro-elastic effects on the static behaviors of multilayered FGPM cylinders are closely examined.

    摘要 I Extended Abstract II 誌謝 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 第二章 基於RMVT的有限圓柱層殼法 5 2.1場量主變數假設 5 2.2 Reissner混合變分原理 8 2.3 Euler-Lagrange方程式 11 第三章 數值範例 16 3.1單層壓電材料圓柱殼 17 3.2壓電材料疊層圓柱殼 18 3.3雙層FGPM薄膜—基座中空圓柱殼 19 第四章 結論 22 參考文獻 23

    [1] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki and R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, New York, 1999.
    [2] S. Suresh and A. Mortensen, Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviors of Graded Metals and Metal-Ceramic Composites, IOM Communications, London Ltd, London, 1998.
    [3] A.M. Zenkour and N.A. Alghamdi, Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads, Mech. Adv. Mater. Struct., vol. 17, pp. 419-432, 2010.
    [4] A.M. Zenkour and N.A. Alghamdi, Thermoelastic bending analysis of functionally graded sandwich plates, J. Mater. Sci., vol. 43, pp. 2574-2589, 2008.
    [5] X.H. Wu, C. Chen, Y.P. Shen and X.G. Tian, A high order theory for functionally graded piezoelectric shells, Int. J. Solids Struct., vol. 39, pp. 5325-5344, 2002.
    [6] E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarks, Arch. Comput. Methods Eng., vol. 10, pp. 215-296, 2003.
    [7] E. Carrera and M. Boscolo, Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates, Int. J. Numer. Methods Eng., vol. 70, pp. 1135-1181, 2007.
    [8] S. Brischetto, R. Leetsch, E. Carrera, T. Wallmersperger and B. Kroplin, Thermo-mechanical bending of functionally graded plates, J. Therm. Stresses, vol. 31, pp. 286-308, 2008.
    [9] M. Cinefra, E. Carrera, S. Brischetto and S. Belouettar, Thermo-mechanical analysis of functionally graded shells, J. Therm. Stresses, vol. 33, pp. 942-963, 2010.
    [10] P.C. Dumir, P. Kumari and S. Kapuria, Assessment of third order smeared and zigzag theories for buckling and vibration of flat angle-ply hybrid piezoelectric panels, Compos. Struct., vol. 90, pp. 346-362, 2009.
    [11] S. Kapuria, P.C. Dumir and S. Sengupta, Assessment of shell theories for hybrid piezoelectric cylindrical shell under thermoelectric load, J. Therm. Stresses, vol. 21, pp. 519-544, 1998.
    [12] S. Kapuria, S. Sengupta and P.C. Dumir, Assessment of shell theories for hybrid piezoelectric cylindrical shell under electromechanical load, Int. J. Mech. Sci., vol. 40, pp. 461-477, 1998.
    [13] A. Alibeigloo, Three-dimensional exact solution for functionally graded rectangular plate with integrated surface piezoelectric layers resting on elastic foundation, Mech. Adv. Mater. Struct., vol. 17, pp. 183-195, 2010.
    [14] A. Alibeigloo and W. Q. Chen, Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers, Eur. J. Mech. A/Solids, vol. 29, pp. 714-723, 2010.
    [15] A. Alibeigloo, Static analysis of a functionally graded cylindrical shell with piezoelectric layers as sensor and actuator, Smart Mater. Struct., vol. 18, 065004, 2010.
    [16] G.M. Kulikov and S.V. Plotnikova, A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates, Compos. Struct., vol. 106, pp. 33-46, 2013.
    [17] G.M. Kulikov and S.V. Plotnikova, Exact electroelastic analysis of functionally graded piezoelectric shells, Int. J. Solids Struct., vol. 51, pp. 13-25, 2014.
    [18] G.M. Kulikov and S.V. Plotnikova, A sampling surfaces method and its implementation for 3D thermal stress analysis of functionally graded plates, Compos. Struct., vol. 120, pp. 315-325, 2015.
    [19] C.P. Wu and R.Y. Jiang, The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal loads, J. Intell. Mater. Syst. Struct., vol. 22, pp. 691-712, 2011.
    [20] C.P. Wu and S.E. Huang, Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method, CMC-Comput. Mater. Continua, vol. 12, pp. 251-282, 2009.
    [21] C.P. Wu and T.C. Tsai, Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method, Appl. Math. Model., vol. 36, pp. 1910-1930, 2012.
    [22] C.P. Wu and Y.S. Syu, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, Int. J. Solids Struct., vol. 44, pp. 6450-6472, 2007.
    [23] C.P. Wu and Y.H. Tsai, Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation, J. Eng. Math., vol. 63, pp. 95-119, 2009.
    [24] C.P. Wu and Y.H. Tsai, Asymptotic DQ solutions of functionally graded annular spherical shells, Eur. J. Mech. A/Solids, vol. 23, pp. 283-299, 2004.
    [25] C.P. Wu and Y.H. Tsai, Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales, Eur. J. Mech. A/Solids, vol. 29, pp. 166-181, 2010.
    [26] Z.S. Shao, Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length, Int. J. Press. Vess. Pip., vol. 82, pp. 155-163, 2005.
    [27] C.F. , C.W. Lim and W.Q. Chen, Exact solutions for free vibrations of functionally graded thick plates on elastic foundations, Mech. Adv. Mater. Struct., vol. 16, pp. 576-584, 2009.
    [28] Z. Zhong, S. Chen and E. Shang, Analytical solution of a functionally graded plate in cylindrical bending, Mech. Adv. Mater. Struct., vol. 17, pp. 595-602, 2010.
    [29] A. Alibeigloo and V. Nouri, Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method, Compos. Struct., vol. 92, pp. 1775-1785, 2010.
    [30] A.B. Rad and A. Alibeigloo, Semi-analytical solution for the static analysis of 2D functionally graded solid and annular circular plates resting on elastic foundation, Mech. Adv. Mater. Struct., vol. 20, pp. 515-528, 2013.
    [31] R.A. Alashti and M. Khorsand, Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled, Int. J. Press. Vess. Pip., vol. 96, pp. 49-67, 2012.
    [32] R.A. Alashti and M. Khorsand, Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method, Int. J. Press. Vess. Pip., vol. 88, pp. 167-180, 2011.
    [33] J.H. Zhang and S.R. Li, Free vibration of functionally graded truncated conical shells using the GDQ method, Mech. Adv. Mater. Struct., vol. 20, pp. 61-73, 2013.
    [34] T.T. Yu, S. Yin, T.Q. Bui and S. Hirose, A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates, Finite Elem. Anal. Des., vol. 96, pp. 1-10, 2015.
    [35] M.K. Singha, T. Prakash and M. Ganapathi, Finite element analysis of functionally graded plates under transverse load, Finite Elem. Anal. Des., vol. 47, pp. 453-460, 2011.
    [36] L.V. Tran, C.H. Thai and H. Nguyen-Xuan, An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates, Finite Elem. Anal. Des., vol. 73, 65-76, 2013.
    [37] H.T. Thai and D.H. Choi, Finite element formulation of various four unknown shear deformation theories for functionally graded plates, Finite Elem. Anal. Des., vol. 75, pp. 50-61, 2013.
    [38] M. Shakeri and R. Mirzaeifar, Static and dynamic analysis of thick functionally graded plates with piezoelectric layers using layerwise finite element model, Mech. Adv. Mater. Struct., vol. 16, pp. 561-575, 2009.
    [39] S. Xiang, Y.T. Chen and G.W. Kang, Local collocation method for prediction of natural frequency of functionally graded cylindrical shells, Mech. Adv. Mater. Struct., vol. 22, pp. 969-977, 2015.
    [40] S. Brischetto, E. Carrera, Refined 2D models for the analysis of functionally graded piezoelectric plates, J. Intell. Mater. Syst. Struct. 20 (2009) 1783-1797.
    [41] E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct. 17 (2010) 603-621.
    [42] C.P. Wu, K.H. Chiu, Y.M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput. Mater. Continua 8 (2008) 93-132.
    [43] D.A. Saravanos, P.R. Heyliger, Mechanics and computational models for laminated piezoelectric beams, plates, and shells, Appl. Mech. Rev. 52 (1999) 305-320.
    [44] E. Reissner, On a certain mixed variational theorem and a proposed application, Int. J. Numer. Methods Eng., vol. 20, pp. 1366-1368, 1984.
    [45] E. Reissner, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer. Methods Eng., vol. 23, pp. 193-198, 1986.
    [46] C.P. Wu and Y.T. Chang, A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer, Compos. Part B: Eng., vol. 43, pp. 3318-3333, 2012.
    [47] C.P. Wu, Y.C. Chen and S.T. Peng, Buckling analysis of functionally graded material circular hollow cylinders under combined axial compression and external pressure, Thin-Walled Struct., vol. 69, pp. 54-66, 2013.

    [48] C.P. Wu, S.T. Peng and Y.C. Chen, RMVT- and PVD-based finite cylindrical layer methods for the three-dimensional buckling analysis of multilayered FGM cylinders under axial compression, Appl. Math. Model., vol. 38, pp. 233-252, 2014.
    [49] S. Kapuria, S. Sengupta and P.C. Dumir, Three-dimensional solutions for simply-supported piezoelectric cylindrical shell for axisymmetric load, Comput. Methods Appl. Mech. Eng., vol. 140, pp. 139-155, 1997.
    [50] C.P. Wu, Y.S. Syu and J.Y. Lo, Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach, Int. J. Mech. Sci., vol. 49, pp. 669-689, 2007.
    [51] C.P. Wu and Y.C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates, Compos. Struct., vol. 90, pp. 363-372, 2009.
    [52] C.P. Wu, S.J. Chen and K.H. Chiu, Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method, Mech. Res. Commun., vol. 37, 54-60, 2010.

    下載圖示 校內:2017-09-01公開
    校外:2017-01-27公開
    QR CODE