簡易檢索 / 詳目顯示

研究生: 李志成
Lee, Zhi-Cheng
論文名稱: 利用光子晶體能隙高色散特性之雙模態干涉分波多工器
Novel Two-Mode-Interference Wavelength-Division Multiplexers Using Highly Dispersive Property of Photonic Band Gap
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 108
中文關鍵詞: 分波多工器雙模干涉有限差分時域法光子能隙
外文關鍵詞: two-mode interference, finite difference time domain, wavelength-division multiplexer, photonic band gap
相關次數: 點閱:153下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文發明了一種新微型高效率雙模干涉分波多工(Two-mode-interference wavelength division multiplexing, TMI WDM)的方法並成功建立其理論模型。其工作原理是利用光子晶體能隙(Photonic band gap, PBG)邊緣的高色散特性,將 PBG 邊緣的波長在很短的距離內分開。元件的設計、模擬與效能分析是使用二維的有限差分時域法(Finite difference time domain, FDTD)。經過設計,具有高色散性光柵結構的雙模波導管會產生一個中心波長落在1550nm並與模態相依的光子能隙。位於光子能隙邊緣的兩個波長,具有最低的反射損耗和最高的色散性,故被選擇以進行分波驗證。結果顯示此二波長的耦合長度(分波距離)因光子能隙的高色散性影響可明顯縮短。能量強度對比差異可達20dB 以上,嵌入損耗只有0.8 dB。

    In this dissertation, a novel technique of two-mode-interference wavelength-division multiplexing (TMI WDM) for 1.55-μm operation using highly dispersive photonic band gap was first proposed. The WDM devices were verified using the finite-difference time-domain (FDTD) method. A two-moded waveguide assisted with a dispersive grating provided a mode-dependent reflection band of central wavelength at 1.55μm. The wavelengths at the PBG edges were selected for wavelength multiplexing for their low reflection losses and high dispersive properties. The results showed that the wavelengths can be separated in much shorter coupler lengths than those using regular waveguide coupling. The insertion loss of 0.8 dB and the isolation contrast above 20dB could be achieved.

    Chinese abstract i Abstract ii Acknowledgements (Chinese) iii Acknowledgements iv Contents v Table Captions viii Figure Captions ix Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Wavelength Division Multiplexing in optical fiber communication 1 1.1.2 Two-Mode-Interference WDM 2 1.2 Contents of Chapters 5 Chapter 2 Theories of Grating-Assisted TMI WDM 11 2.1 Theory of Multimode Interference 11 2.2 Grating-Assisted TMI WDM 18 2.2.1 Grating effects on group velocity and phase velocity 18 2.2.2 Symmetric tooth-shaped grating -Assisted TMI WDM 21 Chapter 3 Grating-assisted Two-Mode-Interference Wavelength Division Multiplexers 27 3.1 Introduction 27 3.2 Schematic design of toothed-grating TMI multiplexers 29 3.3 Theory of grating-assisted TMI multiplexing 34 3.4 Simulation and analysis 39 3.5 Conclusion 46 Chapter 4 Wavelength-Division-Multiplexers Using Highly Dispersive Waveguide-to-Waveguide Coupling 48 4.1 Introduction 48 4.2 Device design and theory 49 4.3 Simulation and analysis 55 4.4 Conclusion 59 Chapter 5 Wavelength Filters Using Photonic band gap Mode-Related Dispersion in Dual-mode waveguides 62 5.1 Introduction 62 5.2 Design and simulation 62 5. 3 Conclusion 70 Chapter 6 Apodized Wavelength Filters Using Gaussian-Distributed Sidewall Grating 72 6.1 Introduction 72 6.2 Design and simulation 74 6.3 Conclusion 78 Chapter 7 Conclusions and future works 81 7.1 Conclusions 81 7.2 Considerations of 3D SOI rib waveguides and future works 83 Appendix A Simulation program of the multilayer structure 93 Appendix B Modes of a Planar Waveguide 101 B.1 The Symmetric Planar Waveguide 104 B.2 The Asymmetric Planar Waveguide 106

    Chapter1
    [1] W. van Etten and J. van der Plaats, Fundamentals of Optical Fiber
    Communications, in prentice hall international series in optoelectronics, New Yor: Prentice Hall, ch. 15, 1991.
    [2] J. Zheng and H. T. Mouftah, Optical WDM Networks, New Yor: Wiley, ch.1, 2004.
    [3] G. P. Agrawal, Lightwave Technology, in telecommunication systems. New Yor: Wiley, ch. 9, 2005.
    [4] G. Keiser, Optical Communications Essentials, New Yor: McGraw-Hill, ch. 12, 2003.
    [5] C. Dragone, “An N N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812–815, Sept. 1991.
    [6] M. C. Parker and S. D. Walker, “Design of arrayed waveguide gratings using hybrid fourier-fresnel transfom techniques,” IEEE J. Select. Topics Quantum. Electron., vol. 5, pp. 1379–1384, Sept./Oct. 1999.
    [7] T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” IEEE Journal of lightwave technology, vol. 19, No. 11 Nov., 2001.
    [8] J. S. Foresi, B. E. Little, G. Steinmeyer, E. Thoen, H. Haus, E. Ippen, S. Chu, L. Kimerling, and W. Greene, “Si/SiO2 micro-ring resonator opticla add/drop filters,” presented at CLEO’97, Baltimore, MD, 1997, paper CPD-22.
    [9] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, No. 4, pp. 549-551, April, 1998.
    [10] T. Negami, H. Haga and S. Yamamoto, “Guided-wave optical wave length demultiplexer using and asymmetric Y junction,”Appl. Phys. Lett., vol. 54, pp.1080-1082, 1989.
    [11] Z. Weissman, D. Nir, S. Ruschin, and A. Hardy, “Asymmetric Y-junction wavelength demultiplexer based on segmented waveguides,” Appl. Phys. Lett., Vol. 67, No. 3, pp. 302-304, July,1995.
    [12] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [13] A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett., vol. 20, no. 18, pp. 744-746,1984.
    [14] F. Rottmann, A. Neyer, W. Mevenkamp and E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” IEEE Journal of lightwave technology, vol. 6, No. 6, pp. 946-952, June, 1988.
    [15] M. Lopez-Amo, P. Mendez-Valdes, M. Muriel, P. Kaczmarski and P.E. Lagasse, “Design of two mode interference wavelength filter utilizing symmetric three-mode structure,” Electron. Lett., vol. 24, no. 22, pp. 1525-1526, 1988.
    [16] I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 734-737, 1990.
    [17] C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference,” IEEE photon. Technol. Lett. vol. 7, no. 9, pp. 1037-1039, 1995.
    [18] K. Y. Yee, “Number solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.

    Chapter2
    [1]. N. S. Kapany, and J. J. Burke, Optical Waveguides, New York: Academic, 1972.
    [2]. L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [3]. A. Yariv, P. Yeh, Optical Waves in Crystals, in Wiley series in Pure and Applied Optics. New Yor: Wiley, ch. 6, 1984..
    [4]. J. M. Jarem, P. P. Banerjee, B. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, Marcel Dekker, ch. 2, 2000.
    [5]. T. Y. Tsai, Z. C. Lee, C. S. Gau, F. S. Chen, J. R. Chen, C. C. Chen, “A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference,” IEEE photon. Technol. Lett., Oct., 2004.

    Chapter3
    [1]. M. Lopez-Amo, P. Mendez-Valdes, M. Muriel, P. Kaczmarski and P.E. Lagasse, “Design of two mode interference wavelength filter utilizing symmetric three-mode structure,” Electron. Lett., vol. 24, no. 22, pp. 1525-1526, 1988.
    [2]. I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 734-737, 1990.
    [3]. C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton, “Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference,” IEEE photon. Technol. Lett. Vol. 7, no. 9, pp. 1037-1039, 1995.
    [4]. T. Y. Tsai, Z. C. Lee, C. S. Gau, F. S. Chen, J. R. Chen, C. C. Chen, “A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference,” IEEE photon. Technol. Lett., Oct., 2004. (accepted)
    [5]. L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [6]. A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley Series in Pure and Applied Optics, Ch. 6, 1984.

    Chapter4
    [1]. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: grating-assisted couplers,” IEEE J. Lightwave Technol., vol. LT-5, no. 2, pp. 268-273, Feb. 1987.
    [2]. D. B. Kim, C. Y. Park, K. R. Oh, H. M. Kim, and T. H. Yoon, “Design of narrow bandwidth grating-assisted codirectional coupler filter and comparison to the experimental results,” IEEE Photon. Technol. Lett., vol. 3, no. 11, pp. 1505-1507, Nov. 1997.
    [3]. J. S. Foresi, B. E. Little, G. Steinmeyer, E. Thoen, H. Haus, E. Ippen, S. Chu, L. Kimerling, and W. Greene, “Si/SiO2 micro-ring resonator optical add/drop filters,” presented at CLEO’97, Baltimore, MD, 1997, paper CPD-22.
    [4]. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, No. 4, pp. 549-551, April, 1998.
    [5]. C. Dragone, “An N N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812–815, Sept. 1991.
    [6]. M. C. Parker and S. D. Walker, “Design of arrayed waveguide gratings using hybrid fourier-fresnel transform techniques,” IEEE J. Select. Topics Quantum. Electron., vol. 5, pp. 1379–1384, Sept./Oct. 1999.
    [7]. T. Kamalakis and T. Sphicopoulos, “An efficient technique for the design of an arrayed-waveguide grating with flat spectral response,” IEEE J. Lightwave Technol., vol. 19, no. 11, pp. 1716-1725, Nov., 2001.
    [8]. A. Neyer, “Integrated optical multichannel wavelength multiplexer for monomode systems,” Electron. Lett., vol. 20, no. 18, pp. 744-746, 1984.
    [9]. F. Rottmann, A. Neyer, W. Mevenkamp and E. Voges, “Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference,” IEEE J. Lightwave Technol., vol. 6, no. 6, pp. 946-952, June, 1988.

    Chapter5
    [1]. I. R. Croston, T. P. Young, and S. Morasca, “A highly dispersive wavelength division demultiplexer in InGaAlAs-InP for 1.5 µm Operation,” IEEE Photon. Technol. Lett. vol. 10, pp. 734-737, 1990.
    [2]. C. F. Janz, M. R. Paiam, B. P. Keyworth, and J. N. Broughton,” Bent waveguide couplers for (de)multiplexing of arbitrary broadly-separated wavelengths using two-mode interference”, IEEE Photon. Technol. Lett. vol. 7, pp. 1037-1039, 1995.

    Chapter6
    [1] K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, August 1997.
    [2] M. M. Spuehler and D. Erni, “Towards structural optimization of planar integrated lightwave circuits,” Optical and Quantum Electronics, 32, pp. 701-718, 2000.
    [3] A. Giorgio, A. G. Perri, and M. N. Armenise, “Modeling of fully etched waveguiding photonic bandgap structures,” IEEE J. Quantum Electron., vol. 38, no. 6, pp. 630-639, June 2002.
    [4] D. Wiesmann, R. Germann and G. –L. Bona, “Add–drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B, vol. 20, no. 3, pp. 417-423, March 2003.
    [5] J.T. Hastings, M.H. Lim, J.G. Goodberlet and Henry Smith, "Optical Waveguides with Apodized Sidewall Gratings via spatial-phase-locked electron-beam lithography", J. Vac. Sci. Technol. B 20(6), pp. 2753-2757, 2002.
    [6] A. Yariv, P. Yeh, Optical Waves in Crystals, Wiley Series in Pure and Applied Optics, Chap. 6, 1984.

    Chapter7
    [1] G. T. Reed, and A. P. Knights, Silicon Photonics: an introduction, Chichester: John Wiley, 2004.
    [2] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 ”, J. Quant. Electron., vol 27, no. 8, pp. 1971-1974, 1991.
    [3] J. Schmidtchen, A, Splett, B. Schuppert, and K. Petermann, “ Low-loss single-mode optical waveguide with large cross-section on SOI”, Electron. Lett. vol. 27, pp. 1486-1487, 1991.
    [4] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon on insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol., vol. 12, pp. 1771-1776, 1994.
    [5] S. Pogossian, L. Vescan, and A. Vonsovici, “The single mode condition for semiconductor rib waveguides with large cross-section,” J. Lightwave Technol., vol. 16, pp. 1851-1853, 1998.

    下載圖示 校內:2009-10-18公開
    校外:2009-10-18公開
    QR CODE