| 研究生: |
黃建宸 Huang, Chien-Chen |
|---|---|
| 論文名稱: |
以蛾類海拔分布範圍測試氣候變異度假說 Testing climatic variability hypothesis in explaining elevational range distribution of moths |
| 指導教授: |
陳一菁
Chen, I-Ching |
| 共同指導教授: |
沈聖峰
Shen, Sheng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 蛾類 、氣候變異度假說 、溫度耐受性 、臨界溫度 、分布範圍 |
| 外文關鍵詞: | moths, climatic variability hypothesis, thermal tolerance, critical thermal temperature, range size |
| 相關次數: | 點閱:87 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變異度假說(climatic variability hypothesis, CVH)認為分布在越高緯度或越高海拔的物種經歷較大的氣候變異,具有較廣的溫度耐受範圍,因而在高緯度或高海拔可以有較廣的分布幅寬(即Rapoport’s rule)。該假說隱含環境梯度、生理適應以及巨觀生態現象的連結,但過去研究大多只針對地理梯度(緯度或海拔)、氣候變異、物種溫度耐受性或分布幅寬其中兩種因子來探討氣候變異度假說,結果分歧,難以充分支持或推翻假說;因子間的連結是否如同過去預期的直觀也尚待更清楚的驗證。本研究同時考慮上述四項因子,綜合探討影響物種海拔分布的機制,並進一步加入形質資料了解形塑物種生理表現和分布的可能限制因子。我們在台灣中橫及南橫沿線設置氣候站,蒐集逐日氣溫變化資料;並以大蛾類(Macromoths)作為實驗物種,於不同海拔段密集放置燈光誘集裝置,獲得蛾種分布範圍、豐富度。並於現地採集蛾隻,直接進行操作實驗測量其臨界高溫(critical thermal maximum)及臨界低溫(critical thermal minimum)。結果顯示,溫度變異未隨海拔上升而增大、蛾類分布範圍亦未隨海拔上升而變廣,但其溫度耐受範圍與溫度變異有正向關係,顯示生理表現可能受環境變異影響。蛾類的耐受低溫及耐受高溫皆隨海拔上升而降低,但耐受高溫降低幅度較大,因而高海拔物種的溫度耐受範圍較低海拔物種窄。耐受高低溫皆受到所處環境溫度的強烈影響,低海拔地區蛾類可耐受的高溫與低溫皆較高。此外,蛾類的分布上界與下界主要與耐受高溫有關,耐高溫物種可以分布到較低的海拔,其上界也相對較低,蛾類的分布上界與下界之形成主要反應對所處環境溫度的適應。本研究結果支持氣候變異度假說中,氣候變異度與物種溫耐廣度間的連結,從巨觀生理角度也顯示,物種對溫度的適應在熱帶與溫帶地區可能存在差異。
Climatic variability hypothesis (CVH) proposed that organisms living at higher latitude or higher elevation experienced greater climatic variability and thus developed wider physiological thermal tolerance, which enabled them to distribute widely. Robustly testing CVH required empirical evidences of temperature variability, species thermal traits and distribution ranges, which were rarely available along single geographic gradient. Here, we tested CVH by using a species-rich taxa, the Macromoths in subtropical mountains in Taiwan (around 24°N, 121°E). Climatic loggers and light traps were set every 250 m along elevational transects to obtain climatic data and range distributions of moths. Along the transects, we set up thermal station to test critical thermal maximum (CTmax) or minimum (CTmin) temperatures of moths. Our findings partly supported the predictions of CVH that there exists positive relationship between thermal tolerance and climatic variation. However, neither of climatic variation and species’ range sizes increase along elevational gradient. In fact, both CTmax and CTmin decreased with elevation, but the slope of CTmax was steeper than that of CTmin, which resulted in smaller thermal ranges in higher elevation. Moreover, both CTmax and CTmin were strongly affected by ambient temperature in the distribution midpoint of each species while both upper and lower limits were associated with CTmax. The phenomenon contradicted previous findings that increasing climatic variation associated with wider thermal range of species along latitudinal gradients. It suggested thermal adaptation of underlying macroecological pattern may differ in tropical ecosystems.
Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences 267:739-745.
Angilletta, M. J. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
Angilletta, M. J., P. H. Niewiarowski, and C. A. Navas. 2002. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27:249-268.
Bozinovic, F., P. Calosi, and J. I. Spicer. 2011. Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics 42:155-179.
Brattstrom, B. H. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology 24:93-111.
Calosi, P., D. T. Bilton, J. I. Spicer, S. C. Votier, and A. Atfield. 2010. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology 79:194-204.
Chan, W.-P., I.-C. Chen, R. K. Colwell, W.-C. Liu, C.-y. Huang, and S.-F. Shen. 2016. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351:1437-1439.
Chidawanyika, F., and J. S. Terblanche. 2011. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology 57:108-117.
Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, and P. R. Martin. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105:6668-6672.
Duarte, H., M. Tejedo, M. Katzenberger, F. Marangoni, D. Baldo, J. F. Beltrán, D. A. Martí, A. Richter‐Boix, and A. Gonzalez‐Voyer. 2012. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biology 18:412-421.
Estay, S. A., M. Lima, and F. Bozinovic. 2014. The role of temperature variability on insect performance and population dynamics in a warming world. Oikos 123:131-140.
Fu, C. M., L. Ronkay, and H. H. L. (Eds.). 2013. Moths of Hehuanshan. Endemic Species Research Institute, Nantou.
Fu, C. M., and H. R. Tzuoo. 2002. Moths of Anmashan, Part 1. Taichung Nature Research Society, Taichung 21:1-36.
Fu, C. M., and H. R. Tzuoo. 2004. Moths of Anmashan, Part 2. Taichung Nature Research Society, Taichung 23:37-60.
Fu, C. M., H. R. Tzuoo, and W. H. Chen. 1995. Survey of the moths at Pahsienshan area. Ping-Lin Elementary School, Taichung.
García-Robledo, C., E. K. Kuprewicz, C. L. Staines, T. L. Erwin, and W. J. Kress. 2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proceedings of the National Academy of Sciences 113:680-685.
Gaston, K. J. 2009. Geographic range limits of species. Proceedings of the Royal Society B: Biological Sciences 276:1391-1393.
Gaston, K. J., and S. L. Chown. 1999a. Elevation and Climatic Tolerance: A Test Using Dung Beetles. Oikos 86:584-590.
Gaston, K. J., and S. L. Chown. 1999b. Why Rapoport's rule does not generalise. Oikos 84:309-312.
Ghalambor, C. K., R. B. Huey, P. R. Martin, J. J. Tewksbury, and G. Wang. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46:5-17.
Gutiérrez‐Pesquera, L. M., M. Tejedo, M. Olalla‐Tárraga, H. Duarte, A. Nicieza, and M. Solé. 2016. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography 43:1166-1178.
Huey, R. B. 1978. Latitudinal pattern of between-altitude faunal similarity: mountains might be" higher" in the tropics. The American Naturalist 112:225-229.
Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4:131-135.
Hutchison, V. H. 1961. Critical thermal maxima in salamanders. Physiological zoology 34:92-125.
Janzen, D. H. 1967. Why mountain passes are higher in the tropics. The American Naturalist 101:233-249.
Lowe, C. H., and V. J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science 122:73-74.
McCain, C. M. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’in the tropics. Ecology Letters 12:550-560.
McCain, C. M., and K. Bracy Knight. 2013. Elevational Rapoport's rule is not pervasive on mountains. Global Ecology and Biogeography 22:750-759.
Overgaard, J., T. N. Kristensen, K. A. Mitchell, and A. A. Hoffmann. 2011. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? The American Naturalist 178:S80-S96.
Partridge, L., and V. French. 1996. Thermal evolution of ectotherm body size: why get big in the cold. Animals and temperature: Phenotypic and evolutionary adaptation 59:265.
Rohde, K. 1996. Rapoport's rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3:10-13.
Shah, A. A., B. A. Gill, A. C. Encalada, A. S. Flecker, W. C. Funk, J. M. Guayasamin, B. C. Kondratieff, N. L. Poff, S. A. Thomas, K. R. Zamudio, and C. K. Ghalambor. 2017. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology 00:1-10.
Sheldon, K. S., and J. J. Tewksbury. 2014. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95:2134-2143.
Snyder, G. K., and W. W. Weathers. 1975. Temperature adaptations in amphibians. The American Naturalist 109:93-101.
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240-256.
Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. The American Naturalist 140:893-911.
Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences 278:1823-1830.
Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change 2:686-690.
Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and R. B. Huey. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences 111:5610-5615.
Taylor, L., and R. French. 1974. Effects of light-trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research 63:583-594.
Whitton, F. J., A. Purvis, C. D. L. Orme, and M. Á. Olalla‐Tárraga. 2012. Understanding global patterns in amphibian geographic range size: does Rapoport rule? Global Ecology and Biogeography 21:179-190.
Williams, C. 1948. The Rothamsted light trap. Pages 80-85 in Proceedings of the Royal Entomological Society of London. Series A, General Entomology. Wiley Online Library.