簡易檢索 / 詳目顯示

研究生: 賴信佑
Lai, Hsin-Yu
論文名稱: 釹含量對鍶不足鈦酸鍶塊材熱電性質之影響
Effects of Nd content on thermoelectric properties of A-site deficient SrTiO3 bulks
指導教授: 黃啟祥
Huang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱電材料鈦酸鍶鍶不足釹摻雜
外文關鍵詞: Thermoelectric materials, SrTiO3, Sr-deficiency, Nd doping
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料能透過溫差,將熱能及電能互相轉換,此種特性隨著人類對能源需求的增加及環保意識的興起,而逐漸受到科學家們的矚目。其中,陶瓷熱電材料的鈦酸鍶因其具備良好的高溫化學穩定性、製程較簡單且對環境友善無汙染等優點,使其成為近年來備受期待的熱電材料。
    鍶鈦劑量比的調控及稀土元素的摻雜皆為提升鈦酸鍶熱電性質的方式。根據前人的研究,選用與鍶離子半徑較接近的稀土元素,能有效提升鈦酸鍶熱電材料的功率因子。此外,適度的調整鍶鈦之比例,使塊材內部產生鍶空缺,亦會對於電傳導率及熱傳導率有所影響。
    本研究以摻釹的鍶不足鈦酸鍶塊材為研究對象,以固相反應法合成摻釹鈦酸鍶Sr0.95-xNdxTiO3 (x = 00, 05, 10, 15, 20, 25)粉體。經成形後,於1450 ℃之氫氬還原氣氛(5 % H2-95 % Ar)中燒結6小時形成塊材,實驗是探討釹含量對鍶不足鈦酸鍶塊材之結晶相、微觀結構及熱電性質的影響。
    於結晶相及微觀結構方面,諸塊材試樣均為鈦酸鍶單一相,無第二相的存在,隨著釹含量的增加,晶粒有明顯的成長,其相對密度皆超過 96 %以上。
    電傳導率方面,隨著釹含量的增加,塊材的電傳導率亦有明顯的增加,於摻雜25 mol% Nd的試樣達到最大值;諸試樣於操作溫度區間內皆為半導體型轉金屬型的電傳導行為。Seebeck係數方面,諸試樣的Seebeck係數絕對值皆隨著量測溫度的升高而增加,並且呈現N型半導體之特性。摻雜10 mol% Nd及5 mol%鍶不足的塊材試樣於673 K時,具有最佳之功率因子為1400 μW/mK2。
    熱傳導率方面,隨著釹摻雜量的提高,塊材的晶格扭曲程度愈大,導致晶格熱傳導率大幅減低。這是因Nd3+離子與Sr2+離子的半徑及重量之差異會影響鈦酸鍶的晶格扭曲所致。摻雜25 mol% Nd之試樣於673 K量測到最低的熱傳導率,為4.11 W/mK。
    綜合上述之各項熱電性質,經由公式ZT =(S^2 σ)/κ T計算出各試樣之ZT值,其結果顯示釹元素的摻雜及鍶不足確實能提升鈦酸鍶的熱電性質。摻雜10 mol% Nd及5 mol%鍶不足的試樣具有最佳之ZT值,於673 K為0.19,此值相較於未摻雜Nd之試樣,ZT值提升約90 %。

    In this study, crystal structure, microstructure, and thermoelectric properties were assessed to identify the impact of Nd content on Sr-deficiency strontium titanate. Sr0.95-xNdxTiO3 (x = 0.00, 0.05, 0.10, 0.15, 0,20, 0.25) powders were synthesized by solid state reaction and calcined at 1100 ℃ for 5 hours. The mixture powders were formed and sintered at 1450 ℃ for 6 hours under 5 % H2-95 % Ar reducing atmosphere. The crystal structure and microstructure were confirmed by XRD and SEM, respectively. The results showed that the crystal structure of all bulks was mainly SrTiO3 phase. All bulks exhibited dense microstructure with few pores and the average grain size increased monotonically with the increasing content of Nd. The thermoelectric properties were measured from 303 to 673 K.
    With the increasing content of Nd, electrical conductivity was enhanced and meanwhile thermal conductivity was reduced. The maximum value of power factor was 1400 μW/mK2 at 673 K for Sr0.85Nd0.1TiO3 bulk. Simultaneously, Sr0.85Nd0.1TiO3 bulk also have the maximum ZT value which was 0.19 at 673 K. This study showed that significant improvements in the thermoelectric power factor could be achieved by the control of the Nd content and Sr-deficiency.

    中文摘要 I Extended Abstract III 目錄 XV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機目的及策略 3 第二章 文獻回顧 5 2-1 基本熱電效應 5 2-1-1 Seebeck效應 5 2-1-2 Peltier效應 6 2-1-3 Thomson效應 7 2-1-4 熱電優值(Figure of merit)與能源轉換效率(η) 7 2-2 熱電效應的發展與應用 10 2-3 熱電材料的分類 12 2-4 氧化物熱電材料之簡介 15 2-4-1 層狀鈷基氧化物 16 2-4-2 透明導電氧化物 17 2-4-3 鈣鈦礦結構氧化物 18 2-5 提升熱電性質之方法 19 2-6 鈦酸鍶相關背景及研究動態 21 2-6-1 鈦酸鍶材料常見的合成與製備方式 22 2-6-2 鈦酸鍶燒結特性相關研究 25 2-7 摻雜稀土元素之非劑量比鈦酸鍶熱電性質之相關文獻 28 第三章 實驗方法與步驟 48 3-1 實驗用藥品及原料 48 3-2 實驗流程 48 3-3 材料性質之分析 49 3-3-1 粉體及燒結體之結晶相鑑定 49 3-3-2 燒結體密度之量測 49 3-3-3 顯微結構與化學成份分析 50 3-3-4 燒結體之表面化學鍵結分析 51 3-4 燒結體熱電性質之分析 52 3-4-1 電傳導率量測 52 3-4-2 Seebeck係數量測 52 3-4-3 熱傳導率量測 53 第四章 結果與討論 61 4-1 粉體之相鑑定及微結構分析 61 4-2 塊材之相鑑定及微結構分析 61 4-2-1 塊材之結晶相與晶格常數 61 4-2-2 塊材之微觀結構 65 4-3 塊材之熱電性質 66 4-3-1 電傳導率 66 4-3-2 Seebeck係數 69 4-3-3 功率因子 70 4-3-4 熱傳導率 71 4-3-5 ZT值 72 第五章 結論 91 參考文獻 92

    [1] D.M. Rowe, "CRC handbook of thermoelectrics," CRC press, 1995.
    [2] A. Khajepour, F. Rahmani, "An approach to design a Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP, " Applied Radiation and Isotopes, 119, 51-59, 2017.
    [3] R. Richman, J. Stringerb, "Prospects for efficient thermoelectric materials in the near term, " DARPA/DOE High Efficient Thermoelectric, 2002.
    [4] J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, "When the thermoelectrics reached the nanoscale, " Nature nanotechnology, 8, 471-473, 2013.
    [5] G.J. Snyder, E.S. Toberer, "Complex thermoelectric materials, "Nature Materials, 7, 105-114, 2008.
    [6] O. Francis, C.J. Lekwuwa, I.H. John, "Performance Evaluation of a Thermoelectric Refrigerator, " International Journal of Engineering and Innovative Technology (IJEIT), 2, 18-24, 2013.
    [7] K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, "Thermoelectric Ceramics for Energy Harvesting, "Journal of the American Ceramic Society, 96, 1-23, 2013.
    [8] J.W. Fergus, "Oxide materials for high temperature thermoelectric energy conversion, "Journal of the European Ceramic Society, 32, 525-540, 2012.
    [9] J. He, T.M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward, "Science, 357, 9997, 2017.
    [10] L.D. Hicks and M.S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor, "Physical Review B, 47, 16631, 1993.
    [11] L.D. Hicks and M.S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit, "Physical Review B, 47, 12727, 1993.
    [12] L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, "Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials, " Applied Physics Letters, 63, 3230, 1993.
    [13] J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, "When the thermoelectrics reached the nanoscale, "Nature Nanotech, 8, 471, 2013.
    [14] G.S. Nolas, M. Kaeser, T.M. Tritt, "High figure of merit in partially filled ytterbium skutterudite materials, "Applied Physics Letters, 77, 1855-1857, 2000.
    [15] 陳力東, 劉睿恆, 史汛, "熱電材料與器件, "北京科學出版社, 2018
    [16] S.B. Riffat, X. Ma, "Thermoelectrics: a review of present and potential applications, "Applied Thermal Engineering, 23, 913-935, 2003.
    [17] F. Stabler, "Automotive applications of high efficiency thermoelectrics, Proceedings of DARPA/ONR/DOE High Efficiency Thermoelectric Workshop, "1-26, 2002.
    [18] K. Kato, M. Yamamoto, S. Ohta, H. Muta, K. Kurosaki, S. Yamanaka, H. Iwasaki, H. Ohta, K. Koumoto, "The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3, "Journal of Applied Physics, 102, 116107, 2007.
    [19] S.B. Riffat, X. Ma, "Thermoelectrics: a review of present and potential applications, "Applied thermal engineering, 23, 913-935, 2003.
    [20] A.J. Sesselmann, "Investigation on the Thermoelectric and Structural Properties of Cobalt-Antimony based Skutterudites and Modifications with Indium and Rare-Earth Elements. "PhD thesis Universität Augsburg, 2012.
    [21] X. Shi, J. Yang, J.R. Salvador, M. Chi, j.Y. Cho, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. "Journal of the American Chemical Society, 133(20), 7837-7846, 2011.
    [22] B.C. Sales, D. Mandrus, and R.K. Williams, "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. "Science, 272(5266), 1325-1328, 1996.
    [23] H. Alam and S. Ramakrishna, "A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. "Nano Energy, 2(2), 190-212, 2013.
    [24] P. Rogl, D.M. Rowe, "Formation and Crystal Chermistry of Clathrates, Thermoelectrics Handbook, Macro to Nano, "CRC Press, Tylor & Francis group: Boca Raton, 32, 1-17, 2006.
    [25] G.S. Nolas, D.M. Rowe, "Structure, Thermal Conductivity, and Thermoelectric Properties of Clathrate Compounds, Thermoelectrics Handbook, Macro to Nano, "CRC Press, Tylor & Francis group: Boca Raton, 33.1-33.7, 2006.
    [26] M. Falmbigl, G. Rogl, M. Kriegisch, H. Muller, E. Beauer, "Thermal expansion of thermoelectric type-I-clathrates. "Journal of Applied Physics, 108(4), 043529-35299, 2010.
    [27] C. Gayner, K.K. Kar, "Recent advances in thermoelectric materials, Progress in Materials, "Science, 83, 330-382, 2016.
    [28] X. Yan, G. Joshi, W. Liu, Y. Lan, S. Lee, "Enhanced of Thermoelectric Figure of Merit of p-type Half-Heuslers, "Nano Letters, 11, 556-560, 2011.
    [29] J. Yang, H. Li, T. Wu, L. Chen, J. Yang, "Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties, "Advanced materials, 18, 2880-2888, 2008.
    [30] S. Ouardi, G.H. Fecher, B. Balke, M. Schwall, X. Kozina, "Thermoelectric properties and electronic structure of substituted Heusler compounds:NiTi0.3-xScxZr0.35Hf0.35Sn, "Applied Physics Letters, 97, 252113, 2010.
    [31] S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. K. odderitzsch, H. Ebert, and E. Ikenaga, "Electronic transport properties of electron- and hole-doped semiconducting Clb Heusler compounds: NiTi1-xMxSn (M=Sc, V), "Physical Review B, 82, 085108, 2010.
    [32] S. Sakurada, N. Shutoh, "Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds, "Applied Physics Letters, 86, 082105, 2005.
    [33] S. Sakurada, N. Shutoh, "Thermoelectric properties of the Ti X (Zr0.5Hf0.5)1-xNiSn half-Heusler compounds, "Journal of Alloys and Compounds, 389, 204-208, 2005.
    [34] K. Biswas, J. He, I.D. Blum, T.P. Hogan, D.N. Seidman, V.P. Dravid, "High-performance bulk thermoelectrics with all-scale hierarchical architectures, "Nature, 489, 414-418, 2012.
    [35] J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, "High-performance nanostructured thermoelectric materials, "NPG Asia Materials, 2, 152-158, 2010.
    [36] K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, S. Liu, "Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production, "RSC Advances, 1, 1661, 2011.
    [37] I. Terasaki, Y. Sasago, and K. Uchinokura, "Large thermoelectric power in NaCo2O4 single crysrals, "Physical Review B, 56, 12685, 1997.
    [38] Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, "Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, "Nature, 423, 6938, 2003.
    [39] W. J. Chang, C. C. Hsieh, T. Y. Chung, S. Y. Hsu, K. H. Wu, T. M. Uen, J.-Y. Lin, J. J. Lin, C.-H. Hsu, Y. K. Kuo, H. L. Liu, M. H. Hsu, Y. S. Gou, and J. Y. Juang, "Fabrication and low temperature thermoelectric properties of NaxCoO2 (x=0,68 and 0.75) exitaxial films by the reactive solid-phase epitaxy, "Applied Physics Letters, 90, 061917, 2007.
    [40] T. Kawata, Y. Iguchi, T. Itoh, K. Takahata, and I. Terasaki, "Na-site substitution effects on the thermoelectric properties of NaCo2O4, "Physical Review B, 60, 10584, 1999.
    [41] L. Wang, M. Wang, D.L. Zhao, "Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method, "Journal of Alloys and Compounds, 471, 519–523, 2009.
    [42] P.S. Liu, G. Chen, Y. Cui, "High temperature electrical conductivity and thermoelectric power of NaxCoO2, "Solid State Ionics, 179(39), 2308–2312, 2008.
    [43] M. Ito, D. Furumoto, "Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method, "Journal of Alloys and Compounds, 450, 517-520, 2008.
    [44] K. Fujita, T. Mochida, K. Nakamura, "High-temperature thermoelectric properties of NaxCoO2-δ single crystals, "Japanese Journal of Applied Physics, 40, 4644, 2001.
    [45] M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, "High-temperature thermoelectric properties of (Zn1-xAlx)O, "Journal of Applied Physics, 79(3), 1816-1818, 1996.
    [46] P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T.T. Borca, and G. Ramanath, "Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties, "Nano Letter, 11(10), 4337-4342, 2011.
    [47] M. Ohtaki, K. Araki, K. Yamamoto, "High thermoelectric performance of dually doped ZnO ceramics, "Journal of Electronic Materials, 38(7), 1234-1238, 2009.
    [48] E. Combe, S.D. Bhame, E. Guilmeau, and R. Cloots, "Synthesis of In2-xGexO3 nanopowders for thermoelectric applications, "Journal of Materials Research, 27(2), 500–505, 2012.
    [49] J. Lan, Y.H. Lin, Y. Liu, X. Shaoliang, and C.W. Nan, "High thermoelectric performance of nanostructured In2O3-based ceramics, "Journal American Ceramic Society, 95(8), 2465-2469, 2012.
    [50] K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, "Thermoelectric ceramics for energy harvesting, "Journal of the American Ceramic Society, 96, 1-23, 2013.
    [51] A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, "Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, "Physical Review B, 62(1), 166-175, 2000.
    [52] Y. Liu, Y. Lin, L. Jiang, C.W. Nan, "Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides, "Journal of Electroceramics, 21(1), 748-751, 2008.
    [53] Y. Song, C.W. Nan, "High temperature transport properties of Ag-added (Ca0.975La0.025)3Co4O9 ceramics, "Physica B Condensed Matter, 406(14), 2919-2923, 2011.
    [54] T. Okuda, K. Nakanishi, S. Miyasaka, "Large thermoelectric response of metallic perovskites:Sr1-xLaxTiO3 (0 < x < 0.1), "Physical Review B, 63, 113104, 2001.
    [55] F. Lichtenberg, "The story of Sr2RuO4, "Progress in solid state chemistry, 30, 103-131, 2002.
    [56] S. Sõmiya, "Hydrothermal reactions for materials science and engineering: an overview of research in Japan, "Springer Science & Business Media, 2012.
    [57] J. Hannay, "On the artificial formation of the diamond, "Proceedings of the Royal Society of London, 30, 450-461, 1879.
    [58] K. Byrappa, M. Yoshimura, "Handbook of hydrothermal technology, "Sciencedirect, 2012.
    [59] J.O. Eckert, C.C. Hung‐Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, "Kinetics and mechanisms of hydrothermal synthesis of barium titanate, "Journal of the American Ceramic Society, 79, 2929-2939, 1996.
    [60] W. Zhu, C. Wang, S. Akbar, R. Asiaie, "Fast-sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties, "Journal of materials science, 32, 4303-4307, 1997.
    [61] F. Trier, S. Amoruso, D.V. Christensen, A. Sambri, Y.Z. Chen, X. Wang, E. Stamate, R. Bruzzese, N. Pryds, "Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication, "Applied Physics Letters, 103, 031607, 2013.
    [62] S.Y. Cheng, S.L. Fu, C.C. Wei, "Sintering of SrTiO3 with Li2CO3 addition, "Ceramics International, 15, 231-236, 1989.
    [63] K.S. Liu, I.N. Lin, "Enhanced densification of SrTiO3 perovskite ceramics, "Applications of Ferroelectrics, 8, 261-264, 1991.
    [64] S. Cho, P. Johnson, "Evolution of the microstructure of undoped and Nb-doped SrTiO3, "Journal of materials science, 29, 4866-4874, 1994.
    [65] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, "Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency, "Journal of Power Sources, 185, 26-31, 2008.
    [66] Q. Fu, S. Mi, E. Wessel, F. Tietz, "Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, "Journal of the European Ceramic Society, 28, 811-820, 2008.
    [67] L. Amaral, A.M. Senos, P.M. Vilarinho, "Sintering kinetic studies in nonstoichiometric strontium titanate ceramics, "Materials Research Bulletin, 44, 263-270, 2009.
    [68] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R. Kumar, P.S. Wariar, J. Koshy, "Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, "Journal of Alloys and Compounds, 486, 711-715, 2009.
    [69] K. Maca, V. Pouchly, Z. Shen, "Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics, "Integrated Ferroelectrics, 99, 114-124, 2008.
    [70] S.R. Popuri, A.J. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.W. G. Bos, "Glass-like thermal conductivity in SrTiO3 thermoelectric induced by A-site vacancies, "The Royal Society of Chemistry Advances, 4, 33720-33723, 2014.
    [71] A.V. Naumkin, A. Kraut-Vass, C.J. Powell, NIST X-ray photoelectron spectroscopy database, ed., Measurement Services Division of the National Institute of Standards and Technology (NIST) Technology Services, 2008.
    [72] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, "Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions, "Physical Chemistry Chemical Physics, 16, 26946-26954, 2014.
    [73] Y. Cui, J. R. Salvador, J. Yang, H. Wang, G. Amow, and H. Kleinke, "Thermoelectric Properties of Heavily Doped n-Type SrTiO3 Bulk Materials," Journal of Electronic Materials, 38(7), 1002-1007, 2009.
    [74] X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie, N. Chen, "Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, "International Journal of Hydrogen Energy, 35, 7913-7918, 2010.
    [75] S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decoury, M. Pollet, J.W.G. Bos, "Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacanies, "RSC Advances, 4, 33720-33723, 2014.
    [76] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, "Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate, "The Journal of Physical Chemistry C, 118, 4596-4606, 2014.
    [77] L. Zhilun, Z. Huairuo, L. Wen, C. Sinclair, and I.M. Reany, "High-Figure-of-Merit Thermoelectric La-doped A-Site-Deficient SrTiO3 Ceramics, "Chemistry of Materials, 28, 925-935, 2016.
    [78] Y. Chen, J. Liu, Y. Li, X. Zhang, X. Wang, S. Wenbin , L. Jichao, and W. Chunlei , "Enhancement of Thermoelectric Performance of Sr1-xTi0.8Nb0.2O3 Ceramics by Introducing Sr Vacancies, "Journal of electronic materials, 48, 1147-1152, 2019.
    [79] J.U. Rahman, W.H. Nam, N.V. Du, G. Rahman, A.U. Rhman, W.H. Shin, W.S. Seo, M.H. Kim, S. Lee, "Oxygen vacancy revived phonon-glass electron-crystal in SrTiO3, "Journal of the European Ceramics Society, 39, 358-365, 2019.
    [80] L.X. Dong, Y.H. Park, "Structure and transport properties of (Bi1-xSbx)2Te3 thermoelectric materials prepared by mechanical alloying and pulse discharge sintering, "Materials Transactions, 43, 681-687, 2002.
    [81] P.P. Shang, B.P. Zhang, Y. Liu, J.F. Li, H.M. Zhu, "Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics, "Journal of Electronic Materials, 40, 926-931, 2010.
    [82] A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, "Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate, "Chemistry of Materials, 27, 4995-5006, 2015.
    [83] A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, "Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms, "Journal of Materials Chemistry A, 5, 3909-3922, 2017.
    [84] B. Abeles, "Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, "Physical Review B, 131, 1906, 1963.
    [85] R. Boston, W. L. Schmidt, G. D. Lewin, A. C. Iyasara, Z. Lu, H. Zhang†, D. C. Sinclair, and I. M. Reaney., "Protocols for the Fabrication, Characterization, and Optimization of n-Type Thermoelectric Ceramic Oxides," Chemical Material, 29 (1), 265–280, 2017.
    [86] J. Liu, C. L.Wang, Y. Li, W. B. Su, Y. H. Zhu, J. C. Li, "Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics, "Journal of Applied Physics, 114, 223714, 2013.
    [87] 陳頤, "鍶不足對摻鑭鈦酸鍶塊材熱電性質之影響, "國立成功大學材料科學及工程學系碩士學位論文, 1-105, 2017.

    下載圖示 校內:2022-08-19公開
    校外:2022-08-19公開
    QR CODE