| 研究生: |
陳狄欣 Chen, Ti-Hsin |
|---|---|
| 論文名稱: |
隨機非同步協調復位電刺激於顳葉癲癇抑制研究 Research on Suppression of Temporal Lobe Epilepsy by Random Coordinated Reset Stimulation |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 共同指導教授: |
林宙晴
Lin, Chou-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 癲癇 、深腦電刺激 、協調復位電刺激 |
| 外文關鍵詞: | epilepsy, deep brain stimulation, random coordinated reset stimulation |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癲癇為常見之神經疾病,發作過程中容易造成患者全身性痙癴甚至導致猝死。因此近十年針對如何抑制癲癇的治療方式投入研究,深腦電刺激為其中之一,已有許多動物及臨床實驗證實可有效舒緩或抑制癲癇發作。近年協調復位電刺激被提出,此刺激法原先是針對帕金森病進行研究,其模擬結果與臨床試驗證實可有效解決帕金森患者發病的現象,然而目前並無應用在癲癇之研究,而因為癲癇與帕金森發病模式相似,因此本研究假說協調復位電刺激為癲癇抑制有效方法,研究目的為由小鼠動物實驗驗證協調復位電刺激抑制癲癇之效果。
首先以海藻酸誘發小鼠急性癲癇發作,在大腦CA3區施以隨機非同步協調復位電刺激和多點同步θ頻率波間歇性電刺激,同時記錄腦電圖及小鼠行為,接著利用時頻分析、樣本熵、帶功率判斷每次實驗抑制癲癇之成效,以及比較兩種方法之差異。實驗結果顯示隨機非同步協調復位電刺激法比多點同步θ頻率波間歇性電刺激更好,前者在刺激過程中可有效地舒緩癲癇發作,而刺激結束後可使癲癇完全停止。後者雖可在刺激過程中舒緩癲癇發作,但刺激結束後反而有可能造成癲癇加劇。隨機非同步協調復位電刺激法有可能發展為抑制癲癇的新治療方法。
Epilepsy is a common neurological disease, which can easily lead to systemic convulsions and even sudden death. Therefore, in the past ten years, researchers have been devoted to the treatments of epilepsy and deep brain electrical stimulation is one of them. Animal and clinical experiments have confirmed that deep brain stimulation is effective in relieving epileptic seizures. In recent years, a new stimulation technique called the coordinated reset stimulation (CRS) has been proposed for treating Parkinson's disease. The simulation results and clinical trials have confirmed that it is an effective treatment for Parkinson's disease. However, there is no application of CRS in epilepsy research and due to epilepsy and Parkinson's disease have similar patterns, this study hypothesized that coordinated reset stimulation is an effective method for suppression of epilepsy.
Acute epileptic seizures were induced in mice using kainic acid, random coordinated reset stimulation (RCRS) and multi-point theta-burst stimulation (MTBS) were then applied to the CA3 area of the brain. EEG and mouse behavior were recorded at the same time. The sample entropy and band power of the depth EEG were employed to evaluate the effectiveness of the two methods in suppressing epilepsy. The experimental results show that RCRS is better than MTBS. The former could effectively relieve epileptic seizures during the stimulation process, and could stop the epilepsy completely after the stimulation. Although the latter could relieve epileptic seizures during the stimulation process, it may induce epilepsy again after the stimulation. RCRS may have the potential to become a new therapeutic approach to suppression of epilepsy.
[1] Singh, A., & Trevick, S., The Epidemiology of Global Epilepsy. Neurologic clinics, vol. 34, no. 4, pp. 837–847, 2016.
[2] “Epilepsy,” Jun. 19, 2019. https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed Sep. 01, 2021)
[3] Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J., Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, vol. 46, no. 4, pp. 470–472, 2005.
[4] Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., Engel, J., Jr, Forsgren, L., French, J. A., Glynn, M., Hesdorffer, D. C., Lee, B. I., Mathern, G. W., Moshé, S. L., Perucca, E., Scheffer, I. E., Tomson, T., Watanabe, M., & Wiebe, S., ILAE official report: a practical clinical definition of epilepsy. Epilepsia, vol. 55, no. 4, pp. 475–482, 2014.
[5] Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., Hirsch, E., Jain, S., Mathern, G. W., Moshé, S. L., Nordli, D. R., Perucca, E., Tomson, T., Wiebe, S., Zhang, Y. H., & Zuberi, S. M., ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, vol. 58, no. 4, pp.512–521, 2017.
[6] W. O. I. Tatum, Mesial Temporal Lobe Epilepsy , Journal of Clinical Neurophysiology : official publication of the American Electroencephalographic Society, vol. 29, no. 5, pp. 356–365, Oct. 2012.
[7] Porter RJ., Dhir A., Macdonald RL., Rogawski MA., Mechanisms of action of antiseizure drugs, Stefan H, Theodore WH, editors. Handbook of clinical neurology, vol. 108, pp. 663–681, 2012.
[8] Fattorusso, A., Matricardi, S., Mencaroni, E., Dell'Isola, G. B., Di Cara, G., Striano, P., & Verrotti, A., The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Frontiers in neurology, vol. 12, 674483, 2021.
[9] Löscher, W., & Klein, P., The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS drugs, vol. 35, no. 9, pp. 935–963, 2021.
[10] Simeone, T. A., Simeone, K. A., Stafstrom, C. E., & Rho, J. M., Do ketone bodies mediate the anti-seizure effects of the ketogenic diet?. Neuropharmacology, vol. 133, pp. 233–241, 2018.
[11] Rho J. M., How does the ketogenic diet induce anti-seizure effects?. Neuroscience letters, vol. 637, pp.4–10, 2017.
[12] Asadi-Pooya, A. A., Sharan, A., Nei, M., & Sperling, M. R., Corpus callosotomy. Epilepsy & behavior : E&B, vol. 13, no.2, pp.271–278, 2008.
[13] Wykes, R. C., Kullmann, D. M., Pavlov, I., & Magloire, V., Optogenetic approaches to treat epilepsy. Journal of neuroscience methods, vol.260, pp.215–220, 2016.
[14] 詹傑凱, “以α頻率突發波抑制光基因轉殖小鼠之癲癇活動.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2016
[15] 林秉弘, “應用樣本熵與光基因刺激發展即時控制系統抑制光基因轉殖小鼠之癲癇活動.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2017
[16] 湯登棋, “基於神經群模型之容積卡爾曼濾波器於慢性癲癇發作之應用.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2019
[17] 呂柏諺, “方根容積卡爾曼濾波器於癲癇光刺激抑制之研究.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2021
[18] 陳穎俞, “以光基因刺激適應性抑制4-AP誘發之癲癇波.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2015
[19] 王誠鴻, “整合電與光刺激於光基因轉殖小鼠癲癇抑制之研究.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2018
[20] Starnes, K., Miller, K., Wong-Kisiel, L., & Lundstrom, B. N., A Review of Neurostimulation for Epilepsy in Pediatrics. Brain sciences, vol. 9, no. 10, pp.283, 2019.
[21] 江嘉駒, “高頻電刺激抑制癲癇之研究.” 博士論文, 機械工程學系, 國立成功大學, 台灣, 2013
[22] 謝汶宏, “θ波段間歇性電刺激於腹側海馬連合以抑制癲癇.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2013
[23] 王鵬翔, “深腦限頻亂數電刺激抑制小鼠顳葉癲癇發作之成效.” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2021
[24] Tass, P. A., Phase Resetting in Medicine And Biology: Stochastic Modelling and Data Analysis. Berlin: Springer. 1999.
[25] Tass P. A., A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological cybernetics, vol. 89, no. 2, pp. 81–88, 2003.
[26] Gerstner, W., Kempter, R., Van Hemmen, J. L., and Wagner, H., A neuronal learning rule for sub-millisecond temporal coding. Nature, vol. 383, pp. 76–78, 1996.
[27] Markram, H., Lübke, J., Frotscher, M., and Sakmann, B., Regulation of synaptic efficacy by coincidence of postsynaptic Aps and EPSPs. Science (New York, N.Y.), vol. 275, pp. 213–215, 1997.
[28] Bi, G., and Poo, M. M., Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 18, no. 24, pp. 10464–10472, 1998
[29] Feldman, D. E., Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, vol. 27, no. 1, pp. 45–56, 2000.
[30] Tass, P. A., and Majtanik, M., Long-term anti-kindling effects of desynchronization brain stimulation: a theoretical study. Biological cybernetics, vol. 94, no. 1, pp. 58–66, 2006.
[31] Hauptmann, C., and Tass, P. A., Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems, vol. 89, no. 1-3, pp.173–181, 2007.
[32] Popovych, O. V., & Tass, P. A., Desynchronizing electrical and sensory coordinated reset neuromodulation. Frontiers in human neuroscience, vol. 6, pp. 58, 2012.
[33] Maistrenko, Y. L., Lysyansky, B., Hauptmann, C., Burylko, O., & Tass, P. A., Multistability in the Kuramoto model with synaptic plasticity. Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 75, no.6 (Pt 2), pp.066207, 2007.
[34] Tass, P. A., Silchenko, A. N., Hauptmann, C., Barnikol, U. B., & Speckmann, E. J., Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 80, no. 1 (Pt 1), pp. 011902, 2009.
[35] Tass, P. A., Qin, L., Hauptmann, C., Dovero, S., Bezard, E., Boraud, T., & Meissner, W. G., Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of neurology, vol. 72, no. 5, pp. 816–820, 2012.
[36] Adamchic, I., Hauptmann, C., Barnikol, U. B., Pawelczyk, N., Popovych, O., Barnikol, T. T., Silchenko, A., Volkmann, J., Deuschl, G., Meissner, W. G., Maarouf, M., Sturm, V., Freund, H. J., & Tass, P. A., Coordinated reset neuromodulation for Parkinson's disease: proof-of-concept study. Movement disorders : official journal of the Movement Disorder Society, vol. 29, no. 13, pp. 1679–1684, 2014.
[37] Tass, P. A., & Popovych, O. V., Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biological cybernetics, vol. 106, no. 1, pp. 27–36, 2012.
[38] Tass, P. A., Adamchic, I., Freund, H. J., von Stackelberg, T., & Hauptmann, C., Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restorative neurology and neuroscience, vol. 30, no. 2, pp. 137–159, 2012.
[39] Silchenko, A. N., Adamchic, I., Hauptmann, C., & Tass, P. A., Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. NeuroImage, vol. 77, pp. 133–147, 2013.
[40] Adamchic, I., Toth, T., Hauptmann, C., & Tass, P. A., Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Human brain mapping, vol. 35, no. 5, pp. 2099–2118, 2014.
[41] Putnam, T. J., & Merritt, H. H., EXPERIMENTAL DETERMINATION OF THE ANTICONVULSANT PROPERTIES OF SOME PHENYL DERIVATIVES. Science (New York, N.Y.), vol. 85, no. 2213, pp. 525–526, 1937.
[42] Bizière, K., & Chambon, J. P., Modèles animaux d'épilepsie et crises expérimentales [Animal models of epilepsy and experimental seizures]. Revue neurologique, vol. 143, no. 5, pp. 329–340, 1987.
[43] Fisher R. S., Animal models of the epilepsies. Brain research. Brain research reviews, vol. 14, no. 3, pp. 245–278, 1989.
[44] Nadler J. V., Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life sciences, vol. 29, no. 20, pp. 2031–2042, 1981.
[45] Cavalheiro E. A., The pilocarpine model of epilepsy. Italian journal of neurological sciences, vol. 16, no. 1-2, pp. 33–37, 1995.
[46] Sarkisian M. R., Overview of the Current Animal Models for Human Seizure and Epileptic Disorders. Epilepsy & behavior : E&B, vol. 2, no. 3, pp. 201–216, 2001.
[47] Borges, K., Gearing, M., McDermott, D. L., Smith, A. B., Almonte, A. G., Wainer, B. H., & Dingledine, R., Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Experimental neurology, vol. 182, no. 1, pp. 21–34, 2003.
[48] Lévesque, M., & Avoli, M., The kainic acid model of temporal lobe epilepsy. Neuroscience and biobehavioral reviews, vol. 37, no. 10 (Pt 2), pp. 2887–2899, 2013.
[49] Rusina, E., Bernard, C., & Williamson, A., The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro, vol. 8, no. 2, 2021.
[50] Lysyansky, B., Popovych, O. V., & Tass, P. A., Optimal number of stimulation contacts for coordinated reset neuromodulation. Frontiers in neuroengineering, vol. 6, pp. 5, 2013.
[51] Hashimoto, T., Elder, C. M., & Vitek, J. L., A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. Journal of neuroscience methods, vol. 113, no. 2, pp. 181–186, 2002.
[52] Hazarika, N.; Chen, J.Z.; Ah Chung Tsoi; Sergejew, A. Classification of EEG signals using the wavelet transform. Proceedings of 13th International Conference on Digital Signal Processing 1. pp. 89–92, 1997.
[53] Song, Y., Crowcroft, J., & Zhang, J., Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. Journal of neuroscience methods, vol. 210, no. 2, pp. 132–146, 2012.
[54] Delgado-Bonal, A., & Marshak, A., Approximate Entropy and Sample Entropy: A Comprehensive Tutorial, Entropy, vol. 21, no. 6, pp. 541, 2019.
[55] Huang, C. H., Ju, M. S., & Lin, C. C., A robust algorithm for removing artifacts in EEG recorded during FMRI/EEG study. Computers in biology and medicine, vol. 42, no. 4, pp. 458–467, 2012.