簡易檢索 / 詳目顯示

研究生: 楊毅凡
Yang, Yi-Fan
論文名稱: 非對稱半量子安全協定:半量子金鑰分配與半量子私密分享
Asymmetric semi-quantum security protocols: Semi-quantum key distribution and Semi-quantum secret sharing
指導教授: 黃宗立
Hwang, Tzone-Lih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 38
中文關鍵詞: 量子密碼學非對稱半量子金鑰分配協議第三方不誠實半量子私密分享協議
外文關鍵詞: Quantum Cryptography, Asymmetric, Semi-quantum Key Distribution, Third Party, Dishonest, Semi-quantum secret sharing
相關次數: 點閱:154下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首先在半量子環境中提出了「非對稱」的概念,即:古典參與者具有不同的量子能力組合。利用單光子的量子特性,本論文設計了三個非對稱的半量子安全協定。首先,我們提出了一個三方的非對稱半量子金鑰分配協定,藉由一位不誠實第三方的幫助,使兩個僅具備基本且非對稱量子能力的「古典」參與者安全地分享私密金鑰。本論文接著提出一個改良版的三方的非對稱半量子金鑰分配協定,能夠進一步降低其中一位「古典」參與者的量子能力。此外,我們也提出了第一個非對稱半量子私密分享協定,讓私密分享者(boss)能夠將私密金鑰安全的拆分給兩位「古典」成員(agents)。

    This thesis proposes Asymmetric semi-quantum secure communications allowing two classical participants with different quantum capabilities to perform quantum security protocols. By using the properties of the single photons, three asymmetric semi-quantum protocols have been proposed here. The first one is a mediated asymmetric semi-quantum key distribution (MASQKD) protocol, which allows two participants to share a secret key under the help of a dishonest third party. Then, an improved MASQKD protocol is proposed in which the quantum capabilities of one participant are further reduced. Furthermore, an asymmetric semi-quantum secret sharing (ASQSS) protocol is presented, that allows a boss’s master secret key to be shared to two agents.

    中文摘要 i Abstract ii 誌 謝 iii Content iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Contribution 2 1.3 Thesis Structure 4 Chapter 2 Preliminaries 6 2.1 Properties of single photons 6 2.2 Unitary Operators 8 Chapter 3 Asymmetric Semi-Quantum Protocols 10 3.1 Mediated Asymmetric Semi-Quantum Key Distribution 10 3.1.1 Proposed MASQKD Protocol 11 3.1.2 Comparison 13 3.1.3 An Improved MASQKD Protocol 14 3.2 Asymmetric Semi-Quantum Secret Sharing 17 3.2.1 Proposed ASQSS Protocol 17 3.2.2 Comparison 22 Chapter 4 Security Analysis 24 4.1 Analysis of MASQKD 24 4.1.1 Against Collective Attacks 24 4.1.2 Key Rate 27 4.2 Analysis of ASQSS 30 Chapter 5 Conclusions 34 Bibliography 35

    [1] P. W. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124-134.
    [2] C. Bennett and G. Brassard, WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing. 1984, pp. 175-179.
    [3] H.-K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Physical Review Letters, vol. 94, no. 23, p. 230504, 06/16/ 2005.
    [4] X.-H. Li, F.-G. Deng, and H.-Y. Zhou, "Efficient quantum key distribution over a collective noise channel," Physical Review A, vol. 78, no. 2, p. 022321, 08/13/ 2008.
    [5] T. Hwang, C. C. Hwang, and C. W. Tsai, "Quantum key distribution protocol using dense coding of three-qubit W state," The European Physical Journal D, vol. 61, no. 3, pp. 785-790, 2011/02/01 2011.
    [6] K. Boström and T. Felbinger, "Deterministic Secure Direct Communication Using Entanglement," Physical Review Letters, vol. 89, no. 18, p. 187902, 10/11/ 2002.
    [7] F.-G. Deng and G. L. Long, "Secure direct communication with a quantum one-time pad," Physical Review A, vol. 69, no. 5, p. 052319, 05/17/ 2004.
    [8] C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, and G. L. Long, "Quantum secure direct communication with high-dimension quantum superdense coding," Physical Review A, vol. 71, no. 4, p. 044305, 04/28/ 2005.
    [9] B. A. Nguyen, "Quantum dialogue," Physics Letters A, vol. 328, no. 1, pp. 6-10, 2004/07/19/ 2004.
    [10] C.-W. Yang and T. Hwang, "Quantum dialogue protocols immune to collective noise," Quantum Information Processing, vol. 12, no. 6, pp. 2131-2142, 2013/06/01 2013.
    [11] M. Hillery, V. Bužek, and A. Berthiaume, "Quantum secret sharing," Physical Review A, vol. 59, no. 3, pp. 1829-1834, 03/01/ 1999.
    [12] L. Xiao, G. Lu Long, F.-G. Deng, and J.-W. Pan, "Efficient multiparty quantum-secret-sharing schemes," Physical Review A, vol. 69, no. 5, p. 052307, 05/11/ 2004.
    [13] Z.-j. Zhang, Y. Li, and Z.-x. Man, "Multiparty quantum secret sharing," Physical Review A, vol. 71, no. 4, p. 044301, 04/11/ 2005.
    [14] F.-G. Deng, X.-H. Li, and H.-Y. Zhou, "Efficient high-capacity quantum secret sharing with two-photon entanglement," Physics Letters A, vol. 372, no. 12, pp. 1957-1962, 2008/03/17/ 2008.
    [15] D. Markham and B. C. Sanders, "Graph states for quantum secret sharing," Physical Review A, vol. 78, no. 4, p. 042309, 10/10/ 2008.
    [16] I. C. Yu, F.-L. Lin, and C.-Y. Huang, "Quantum secret sharing with multilevel mutually (un)biased bases," Physical Review A, vol. 78, no. 1, p. 012344, 07/23/ 2008.
    [17] J. Lin and T. Hwang, "New circular quantum secret sharing for remote agents," Quantum Information Processing, vol. 12, no. 1, pp. 685-697, 2013/01/01 2013.
    [18] C.-M. Bai, Z.-H. Li, J.-T. Wang, C.-J. Liu, and Y.-M. Li, "Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states," Quantum Information Processing, vol. 17, no. 11, p. 312, 2018/10/05 2018.
    [19] C. Lu, F. Miao, J. Hou, and K. Meng, "Verifiable threshold quantum secret sharing with sequential communication," Quantum Information Processing, vol. 17, no. 11, p. 310, 2018/10/03 2018.
    [20] Z. Huang, "Quantum secret sharing affected by vacuum fluctuation," Quantum Information Processing, vol. 18, no. 3, p. 88, 2019/02/08 2019.
    [21] Y.-G. Yang and Q.-Y. Wen, "An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement," Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 5, p. 055305, 2009/01/06 2009.
    [22] Y.-G. Yang, W.-F. Cao, and Q.-Y. Wen, "Secure quantum private comparison," Physica Scripta, vol. 80, no. 6, p. 065002, 2009/11/18 2009.
    [23] W. Liu, Y.-B. Wang, and Z.-T. Jiang, "An efficient protocol for the quantum private comparison of equality with W state," Optics Communications, vol. 284, no. 12, pp. 3160-3163, 2011/06/01/ 2011.
    [24] H.-Y. Tseng, J. Lin, and T. Hwang, "New quantum private comparison protocol using EPR pairs," Quantum Information Processing, vol. 11, no. 2, pp. 373-384, 2012/04/01 2012.
    [25] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, "Experimental demonstration of quantum memory for light," Nature, vol. 432, no. 7016, pp. 482-486, 2004/11/01 2004.
    [26] X.-C. Yao et al., "Observation of eight-photon entanglement," Nature Photonics, vol. 6, p. 225, 02/12/online 2012.
    [27] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photonics, vol. 1, no. 1, pp. 49-52, 2007/01/01 2007.
    [28] M. Boyer, D. Kenigsberg, and T. Mor, "Quantum Key Distribution with Classical Bob," in 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07), 2007, pp. 10-10.
    [29] Y.-y. Nie, Y.-h. Li, and Z.-s. Wang, "Semi-quantum information splitting using GHZ-type states," Quantum Information Processing, vol. 12, no. 1, pp. 437-448, 2013/01/01 2013.
    [30] M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, "Semiquantum key distribution," Physical Review A, vol. 79, no. 3, p. 032341, 03/30/ 2009.
    [31] X. Zou, D. Qiu, L. Li, L. Wu, and L. Li, "Semiquantum-key distribution using less than four quantum states," Physical Review A, vol. 79, no. 5, p. 052312, 05/12/ 2009.
    [32] K.-F. Yu, C.-W. Yang, C.-H. Liao, and T. Hwang, "Authenticated semi-quantum key distribution protocol using Bell states," Quantum Information Processing, vol. 13, no. 6, pp. 1457-1465, 2014/06/01 2014.
    [33] W. O. Krawec, "Mediated semiquantum key distribution," Physical Review A, vol. 91, no. 3, p. 032323, 03/25/ 2015.
    [34] C.-M. Li, K.-F. Yu, S.-H. Kao, and T. Hwang, "Authenticated semi-quantum key distributions without classical channel," Quantum Information Processing, vol. 15, no. 7, pp. 2881-2893, 2016/07/01 2016.
    [35] Z.-R. Liu and T. Hwang, "Mediated Semi-Quantum Key Distribution Without Invoking Quantum Measurement," Annalen der Physik, vol. 530, no. 4, p. 1700206, 2018/04/01 2018.
    [36] L. Yan, Y. Sun, Y. Chang, S. Zhang, G. Wan, and Z. Sheng, "Semi-quantum protocol for deterministic secure quantum communication using Bell states," Quantum Information Processing, vol. 17, no. 11, p. 315, 2018/10/10 2018.
    [37] C. Shukla, K. Thapliyal, and A. Pathak, "Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue," Quantum Information Processing, vol. 16, no. 12, p. 295, 2017/10/26 2017.
    [38] Y. Sun, L. Yan, Y. Chang, S. Zhang, T. Shao, and Y. Zhang, "Two semi-quantum secure direct communication protocols based on Bell states," Modern Physics Letters A, vol. 34, no. 01, p. 1950004, 2019/01/10 2018.
    [39] L. Liu, M. Xiao, and X. Song, "Authenticated semiquantum dialogue with secure delegated quantum computation over a collective noise channel," Quantum Information Processing, vol. 17, no. 12, p. 342, 2018/11/03 2018.
    [40] T.-Y. Ye and C.-Q. Ye, "Semi-quantum Dialogue Based on Single Photons," International Journal of Theoretical Physics, vol. 57, no. 5, pp. 1440-1454, 2018/05/01 2018.
    [41] C.-Q. Ye and T.-Y. Ye, Circular Semi-Quantum Secret Sharing Using Single Particles. 2018, p. 661.
    [42] J. Wang, S. Zhang, Q. Zhang, and C.-J. Tang, "SEMIQUANTUM SECRET SHARING USING TWO-PARTICLE ENTANGLED STATE," International Journal of Quantum Information, vol. 10, no. 05, p. 1250050, 2012/08/01 2012.
    [43] K.-F. Yu, J. Gu, T. Hwang, and P. Gope, "Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing," Quantum Information Processing, vol. 16, no. 8, p. 194, 2017/07/01 2017.
    [44] Y.-G. Yang, B.-R. Li, S.-Y. Kang, X.-B. Chen, Y.-H. Zhou, and W.-M. Shi, "New quantum key agreement protocols based on cluster states," Quantum Information Processing, vol. 18, no. 3, p. 77, 2019/02/02 2019.
    [45] K. Wei, X. Yang, C. Zhu, and Z.-Q. Yin, "Quantum secret sharing without monitoring signal disturbance," Quantum Information Processing, vol. 17, no. 9, p. 230, 2018/07/27 2018.
    [46] M. A. Nielsen and I. Chuang, "Quantum Computation and Quantum Information," American Journal of Physics, vol. 70, no. 5, pp. 558-559, 2002/05/01 2002.
    [47] C. Bennett, G. Brassard, and J. Robert, "Privacy Amplification by Public Discussion," SIAM Journal on Computing, vol. 17, no. 2, pp. 210-229, 1988/04/01 1988.
    [48] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Transactions on Information Theory, vol. 41, no. 6, pp. 1915-1923, 1995.
    [49] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of Modern Physics, vol. 81, no. 3, pp. 1301-1350, 09/29/ 2009.
    [50] Biham, Boyer, Brassard, G. van de, and Mor, "Security of Quantum Key Distribution against All Collective Attacks," Algorithmica, vol. 34, no. 4, pp. 372-388, 2002/11/01 2002.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE