簡易檢索 / 詳目顯示

研究生: 高浚圻
Kao, Chun-Chi
論文名稱: 懸臂樑半彈性支撐之應力分析
Stress Analysis of an Elastic Support of a Cantilever Beam
指導教授: 宋見春
Sung, Jian-Chuen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 楔形體應力奇異性
外文關鍵詞: wedge, stress singularity
相關次數: 點閱:126下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討懸臂梁不完全固定端的支撐問題,不完全固定支撐考慮為一具彈性性質的彈性體,因此懸臂梁支撐之局部行為可模擬為楔形體進行分析,首先楔形體考慮為單一材料或雙層材料及考慮楔形體表面不同邊界條件下進行楔形體尖端應力奇異性大小之分析。其次,對於楔形體材料應力場奇異性強度的分析,本文利用ABAQUS軟體針對三種不同的情況進行分析,由有限元素分析的數值結果推得不同彈性支撐條件下應力奇異性的強度。

    This paper consider the problem of a cantilever beam with partially fixed-support. . The partially fixed-support is treated as an elastic body with different elastic material. Therefore, the local stress behavior of the corner of the cantilever beam may be viewed as a wedge problem. First, the stress singularity of the wedge is analyzed by regarding the wedge as being composed by a single or bi-layer materials with wedge’ s surface subjected to different boundary conditions. Second, the intensities of stress singularity at the corner of the cantilever beam are analyzed with ABAQUS software. Three different support conditions are modeled in this thesis and results are presented.

    目 錄 摘要 I Abstract II 誌謝 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 本文綱要 3 第二章 基本公式 4 2-1 單一材料之楔形體( Wedge )的公式介紹與推演 4 2-1-1 兩個表面曳引力均為零(Traction free)的問題 6 2-1-2 兩個表面位移均為零(固定)的問題(Fixed end) 10 2-1-3 一表面為零曳引力 (Traction free),另一表面為零位移 14 (Fixed end) 14 2-2 雙層材料之楔形體( Wedge )公式的介紹與推演 16 2-2-1 曳引力為零(Traction free) 17 2-2-2 位移均為零(固定) (Fixed-end) 23 第三章 楔形體應力奇異性分析 30 3-1 單一材料之楔形體( Wedge ) 30 3-1-1 楔形體兩表面之邊界條件皆為曳引力為零(Traction free) 30 3-1-2 楔形體兩表面之邊界條件皆為位移固定(Fixed-end) 35 3-1-3 楔形體之表面一為曳引力為零另一為固定端 36 3-2 雙層材料之楔形體( Wedge ) 39 3-2-1 楔形體兩表面邊界條件皆為零曳引力 (Traction free) 39 3-2-2 楔形體兩表面之邊界條件皆為固定(Fixed-end) 50 第四章 數值結果與討論 53 4-1 套裝軟體:ABAQUS 6.10-1 53 4-1-1 數值模擬分析之步驟與流程 54 4-1-2 有限元素法理論簡介 56 4-2 有限元素法範例分析 57 4-2-1範例一數值結果與討論 59 4-2-2範例二數值結果與討論 69 4-2-3範例三數值結果與討論 79 第五章 結論 88 參考文獻 90

    參考文獻
    [1] A.H England, Complex variable methods in elasticity, Wiley-Interscience, U.K.(1971)
    [2] D.B. Bogy and E.Sternberg, The effect of couple-stresses on the corner singularity due to an asymmetric shear loading, International Journal of Solids and Structures, Vol. 4, pp.159-174(1968)
    [3] E.Reissner, Note on the theorem of the symmetry of the stress tensor, Journal of Mathematics and Physics Vol. 2, pp.192-194(1944)
    [4] I.S. Sokolnikoff, Mathematical theory of elasticity McGraw-Hill, New York(1956)
    [5] J.Dundurs and M.S. Lee, Stress concentration at a sharp edge in contact problems, Journal of Elasticity, Vol. 2, pp.109-112(1972)
    [6] J.H. Michell, On the direct determination of stress in an elastic solid, with application to the theory of plates, Proceedings of the London Mathematical Society, Vol. 31, pp.100-124(1899)
    [7] J.R. Barber, Elasticity, (1992)
    [8] M.Comninou, Stress singularities at a sharp edge in contact problem with friction, Zeitschrift für angewandte Mathematik und Physik, Vol. 27, pp.493-499(1976)
    [9] M.Comninou, The interface crack, ASME Journal of Applied Mechanics, Vol.44, pp.631-636(1977)
    [10] M.L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, ASME Journal of Applied Mechanics, Vol.19, pp.526-528(1952)
    [11] N.I. Muskhelishvili, Singular Integral Equations, (English translation by J.R.M. Radok, Noordhoff, Groningen, 1953)
    [12] N.I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, 4th edition, Noordhoff international Publ., Netherlands(1977)
    [13] R.D. Gregory, Green’s functions, bi-linear forms and completeness of the eigenfunctions for the elastostatic strip and wedge, Journal of Elasticity, Vol.9, pp.283-309(1979)
    [14] V.V. Meleshko and A.M.Gomilko, Infinite systems for a biharmonic problem in a rectangle, Proceedings of the Royal Society of London, Vol. A453, pp.2139-2160(1997)

    下載圖示 校內:2015-08-14公開
    校外:2015-08-14公開
    QR CODE