| 研究生: |
曾心怡 Tseng, Hsin-Yi |
|---|---|
| 論文名稱: |
共沉澱法製備鐵氰化銅修飾之泡沫鎳電極應用於槲皮素感測 Co-precipitation of copper hexacyanoferrate modified nickel foam electrodes for quercetin detection |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 共沉澱法 、鐵氫化銅 、泡沫鎳 、電催化 、槲皮素 |
| 外文關鍵詞: | co-precipitation, copper hexacyanoferrate, nickel foam, electrocatalysis, quercetin |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過共沉澱法在具有良好的導電性、高比表面積以及三維開孔結構的泡沫鎳 (Ni foam) 上,製備具有鐵氰化銅修飾層的泡沫鎳電極 (CuHCF/NF),並應用於電催化槲皮素 (QR) 氧化反應。
透過調控製備鐵氰化銅結構共沉澱過程的實驗參數進行最佳化,其影響變因有CuCl2:K3Fe(CN)6濃度比例、檸檬酸鈉濃度、共沉澱反應溫度、共沉澱反應時間以及乾燥方法,再分別藉由高解析度掃描式電子顯微鏡 (SEM)、X光能量分散式光譜分析儀 (EDS)、X射線繞射儀 (XRD) 以及循環伏安法對CuHCF進行表面形貌、元素組成、晶體結構以及對於催化槲皮素電化學之分析。最佳化條件分別為1:1.5的CuCl2:K3Fe(CN)6濃度比例為、15 mM檸檬酸鈉以及在25℃下沉積60分鐘,反應完後在25℃下乾燥15小時,另外,與電沉積法相比共沉澱法製備之電極具有更佳的催化活性,後續以最佳化條件製備的CuHCF/NF電極進行槲皮素之感測。透過EDS mapping以及XRD鑑定最佳化CuHCF/NF電極,觀察到CuHCF均勻的分布在泡沫鎳上,且其XRD訊號顯示出此實驗CuHCF結構中存在有K+。在電催化槲皮素氧化反應方面,與泡沫鎳空白電極相比,顯示CuHCF/NF電極對於槲皮素具有催化效果,其線性範圍為0.02 μM至70 μM (ip = 4.3768[QR]+116.0100, R2 0.998),偵測極限為0.017 μM。
In this work, a copper hexacyanoferrate modified layer was prepared on the nickel foam (CuHCF/NF) by co-precipitation method, and applied to quercetin detection. Optimization of the experimental parameters for the preparation of CuHCF structures depend on CuCl2 and K3Fe(CN)6 concentration ratio, trisodium citrate concentration, co-precipitation reaction temperature and reaction time. Scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD) and cyclic voltammetry (CV) were employed to characterize the preparation process of the CuHCF/NF electrodes. Under optimized conditions, CuHCF/NF electrodes showing electrocatalytic ability toward the oxidation of Quercetin (QR) compared with the nickel foam electrode. The linear range of QR were 0.02 μM-70 μM and a lower limit of detection of 0.017 μM.
1. Jan, A. T.; Kamli, M. R.; Murtaza, I.; Singh, J. B.; Ali, A.; Haq, Q. M. R., Dietary flavonoid quercetin and associated health benefits—an overview. Food Rev. Int. 2010, 26 (3), 302-317.
2. Boots, A. W.; Haenen, G. R.; Bast, A., Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585 (2-3), 325-337.
3. Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J. P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E. L.; Cossarizza, A., Quercetin and cancer chemoprevention. Evid.-based Complement. Altern. Med. 2011, 2011, 591356.
4. Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S. M.; Salem, M. A.; Merghany, R. M.; El Mahdy, N. M.; Kilic, C. S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W. C., Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 2020, 5 (20), 11849-11872.
5. Zamora-Ros, R.; Forouhi, N. G.; Sharp, S. J.; Gonzalez, C. A.; Buijsse, B.; Guevara, M.; van der Schouw, Y. T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; Fagherazzi, G.; Feskens, E. J.; Franks, P. W.; Grioni, S.; Katzke, V.; Key, T. J.; Khaw, K. T.; Kuhn, T.; Masala, G.; Mattiello, A.; Molina-Montes, E.; Nilsson, P. M.; Overvad, K.; Perquier, F.; Redondo, M. L.; Ricceri, F.; Rolandsson, O.; Romieu, I.; Roswall, N.; Scalbert, A.; Schulze, M.; Slimani, N.; Spijkerman, A. M.; Tjonneland, A.; Tormo, M. J.; Touillaud, M.; Tumino, R.; van der, A. D.; van Woudenbergh, G. J.; Langenberg, C.; Riboli, E.; Wareham, N. J., Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J. Nutr. 2014, 144 (3), 335-343.
6. Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A., Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76 (3), 560-568.
7. Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N., Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68-75.
8. Vida, R. G.; Fittler, A.; Somogyi-Vegh, A.; Poor, M., Dietary quercetin supplements: Assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res. 2019, 33 (7), 1912-1920.
9. Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schafer, B.; Hirsch-Ernst, K. I.; Lampen, A., Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018, 62 (1), 1700447.
10. Ranjbari, E.; Biparva, P.; Hadjmohammadi, M. R., Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples. Talanta 2012, 89, 117-123.
11. Ishii, K.; Furuta, T.; Kasuya, Y., High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. J. Chromatogr. B 2003, 794 (1), 49-56.
12. Wang, C.; Zuo, Y., Ultrasound-assisted hydrolysis and gas chromatography-mass spectrometric determination of phenolic compounds in cranberry products. Food Chem. 2011, 128 (2), 562-568.
13. Soleas, G. J.; Yan, J.; Goldberg, D. M., Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J. Chromatogr. B Biomed. Appl. 2001, 757 (1), 161-172.
14. Martelo-Vidal, M. J.; Vazquez, M., Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Food Chem. 2014, 158, 28-34.
15. Wang, W.; Lin, P.; Ma, L.; Xu, K.; Lin, X., Separation and determination of flavonoids in three traditional chinese medicines by capillary electrophoresis with amperometric detection. J. Sep. Sci. 2016, 39 (7), 1357-1362.
16. Xu, B.; Yang, L.; Zhao, F.; Zeng, B., A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim. Acta 2017, 247, 657-665.
17. Manokaran, J.; Muruganantham, R.; Muthukrishnaraj, A.; Balasubramanian, N., Platinum- polydopamine @SiO2 nanocomposite modified electrode for the electrochemical determination of quercetin. Electrochim. Acta 2015, 168, 16-24.
18. Zhou, Z.; Gu, C.; Chen, C.; Zhao, P.; Xie, Y.; Fei, J., An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene /mercapto-β-cyclodextrin /Au nanoparticles composite film. Sens. Actuators B: Chem. 2019, 288, 88-95.
19. Veerapandian, M.; Seo, Y. T.; Yun, K.; Lee, M. H., Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens. Bioelectron. 2014, 58, 200-204.
20. Pei, F.; Wu, Y.; Feng, S.; Wang, H.; He, G.; Hao, Q.; Lei, W., Palladium nanoparticle-modified carbon spheres @ molybdenum disulfide core-shell composite for electrochemically detecting quercetin. Chemosensors 2022, 10 (2), 56.
21. Zhao, P.; Ni, M.; Xu, Y.; Wang, C.; Chen, C.; Zhang, X.; Li, C.; Xie, Y.; Fei, J., A novel ultrasensitive electrochemical quercetin sensor based on MoS2 - carbon nanotube @ graphene oxide nanoribbons / HS-cyclodextrin / graphene quantum dots composite film. Sens. Actuators B: Chem. 2019, 299, 126997.
22. Pliuta, K.; Chebotarev, A.; Koicheva, A.; Bevziuk, K.; Snigur, D., Development of a novel voltammetric sensor for the determination of quercetin on an electrochemically pretreated carbon-paste electrode. Anal. Methods 2018, 10 (12), 1472-1479.
23. Gomez, F. J.; Espino, M.; de Los Angeles Fernandez, M.; Raba, J.; Silva, M. F., Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents. Anal. Chim. Acta 2016, 936, 91-96.
24. Niu, X.; Li, X.; Chen, W.; Li, X.; Weng, W.; Yin, C.; Dong, R.; Sun, W.; Li, G., Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitive quercetin sensing and its application. Mater. Sci. Eng. C 2018, 89, 230-236.
25. Ziyatdinova, G.; Kozlova, E.; Budnikov, H., Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. J. Electroanal. Chem 2018, 821, 73-81.
26. Xu, Y.; Zheng, S.; Tang, H.; Guo, X.; Xue, H.; Pang, H., Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater. 2017, 9, 11-30.
27. Simonov, A.; De Baerdemaeker, T.; Bostrom, H. L. B.; Rios Gomez, M. L.; Gray, H. J.; Chernyshov, D.; Bosak, A.; Burgi, H. B.; Goodwin, A. L., Hidden diversity of vacancy networks in Prussian blue analogues. Nature 2020, 578 (7794), 256-260.
28. Ren, L.; Wang, J.-G.; Liu, H.; Shao, M.; Wei, B., Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim. Acta 2019, 321, 134671.
29. Yang, Y. J.; Dong, J.; Zhang, C.; Ding, X.; Li, Y.; Ren, H.; Guo, F., Phosphotungstic acid assisted growth of nickel hexacyanoferrate on Ni foam for binder-free supercapacitor electrode. J. Electroanal. Chem 2021, 895, 115537.
30. Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J. J.; Yang, X. Q.; Henkelman, G.; Goodenough, J. B., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137 (7), 2658-2664.
31. Giorgetti, M.; Guadagnini, L.; Tonelli, D.; Minicucci, M.; Aquilanti, G., Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Phys. Chem. Chem. Phys. 2012, 14 (16), 5527-5537.
32. Song, F.; Huo, D.; Hu, J.; Huang, H.; Yuan, J.; Shen, J.; Wang, A. J., Cationic supercapacitance of carbon nanotubes covered with copper hexacyanoferrate. Nanotechnology 2019, 30 (50), 505401.
33. Shi, L.; Bi, X.; Newcomer, E.; Hall, D. M.; Gorski, C. A.; Galal, A.; Logan, B. E., Co-precipitation synthesis control for sodium ion adsorption capacity and cycle life of copper hexacyanoferrate electrodes in battery electrode deionization. Chem. Eng. J. 2022, 435, 135001.
34. Kjeldgaard, S.; Dugulan, I.; Mamakhel, A.; Wagemaker, M.; Iversen, B. B.; Bentien, A., Strategies for synthesis of prussian blue analogues. R. Soc. Open Sci. 2021, 8 (1), 201779.
35. Ojwang, D. O.; Grins, J.; Wardecki, D.; Valvo, M.; Renman, V.; Haggstrom, L.; Ericsson, T.; Gustafsson, T.; Mahmoud, A.; Hermann, R. P.; Svensson, G., Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg. Chem. 2016, 55 (12), 5924-5934.
36. Matos-Peralta, Y.; Antuch, M., Review—prussian blue and its analogs as appealing materials for electrochemical sensing and biosensing. J. Electrochem. Soc. 2019, 167 (3), 037510.
37. Reguera, L.; Krap, C. P.; Balmaseda, J.; Reguera, E., Hydrogen storage in copper prussian blue analogues: evidence of H2 coordination to the copper atom. J. Phys. Chem. C 2008, 112 (40), 15893-15899.
38. Wong, M. H.; Zhang, Z.; Yang, X.; Chen, X.; Ying, J. Y., One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes. Chem. Commun. 2015, 51 (71), 13674-13677.
39. Banavath, R.; Srivastava, R.; Bhargava, P., Nanoporous cobalt hexacyanoferrate nanospheres for screen-printed H2O2 sensors. ACS Appl. Nano Mater. 2021, 4 (5), 5564-5576.
40. Lin, M. S.; Shih, W. C., Chromium hexacyanoferrate based glucose biosensor. Anal. Chim. Acta 1999, 381 (2), 183-189.
41. Chalil Oglou, R.; Ulusoy Ghobadi, T. G.; Ozbay, E.; Karadas, F., Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal. Chim. Acta 2021, 1188, 339188.
42. Chen, W.; Tang, J.; Cheng, H. J.; Xia, X. H., A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application. Talanta 2009, 80 (2), 539-543.
43. Pandey, P. C.; Panday, D., Novel synthesis of nickel–iron hexacyanoferrate nanoparticles and its application in electrochemical sensing. J. Electroanal. Chem 2016, 763, 63-70.
44. Oliveira, P. R.; Schibelbain, A. F.; Neiva, E. G. C.; Zarbin, A. J. G.; Marcolino, L. H.; Bergamini, M. F., Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of rifampicin. Sens. Actuators B: Chem. 2018, 260, 816-823.
45. Jiang, D.; Pang, J.; You, Q.; Liu, T.; Chu, Z.; Jin, W., Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosens. Bioelectron. 2019, 124-125, 260-267.
46. Wu, L. L.; Chen, X. H.; Zhang, Q.; Luo, J.; Fu, H. C.; Shen, L.; Luo, H. Q.; Li, N. B., Formation of hierarchical NiFe Prussian blue analogues/Prussian blue on nickel foam for superior water oxidation. Appl. Surf. Sci. 2021, 567, 150835.
47. Bommireddy, P. R.; Chandra Sekhar, M.; Lee, Y.-W.; Kumar, M.; Suh, Y.; Park, S.-H., Binder-free Co–Ni hexacyanoferrate as a battery-type electrode material for hybrid supercapacitors. Ceram. Int. 2022, 48 (8), 11849-11857.
48. Zhu, X.; Tao, H.; Li, M., Co-precipitation synthesis of nickel cobalt hexacyanoferrate for binder-free high-performance supercapacitor electrodes. Int. J. Hydrog. Energy 2020, 45 (28), 14452-14460.
49. Safavi, A.; Kazemi, S. H.; Kazemi, H., Electrochemically deposited hybrid nickel–cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors. Electrochim. Acta 2011, 56 (25), 9191-9196.
50. Ventura, M.; Mullaliu, A.; Ciurduc, D. E.; Zappoli, S.; Giuli, G.; Tonti, D.; Enciso, E.; Giorgetti, M., Thin layer films of copper hexacyanoferrate: Structure identification and analytical applications. J. Electroanal. Chem 2018, 827, 10-20.
51. Kulshreshtha, A.; Dhakad, S. K., Preparation of metal foam by different methods: a review. Mater. Today 2020, 26, 1784-1790.
52. Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K., Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 2017, 9 (34), 12231-12247.
53. Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S., Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of Inorganic Nanomaterials, Woodhead: Cambridge, 2018; pp 121-139.
54. Han, J.; Roh, K. C.; Jo, M. R.; Kang, Y. M., A novel co-precipitation method for one-pot fabrication of a Co-Ni multiphase composite electrode and its application in high energy-density pseudocapacitors. Chem. Commun. 2013, 49 (63), 7067-7069.
55. Li, Y.; Dang, Q.; Chen, W.; Tang, L.; Hu, M., Recent advances in rechargeable batteries with prussian blue analogs nanoarchitectonics. J. Inorg. Organomet. Polym. Mater. 2021, 31 (5), 1877-1893.
56. Ying, S.; Chen, C.; Wang, J.; Lu, C.; Liu, T.; Kong, Y.; Yi, F. Y., Synthesis and applications of prussian blue and its analogues as electrochemical sensors. ChemPlusChem 2021, 86 (12), 1608-1622.
57. Kasiri, G.; Trócoli, R.; Bani Hashemi, A.; La Mantia, F., An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 2016, 222, 74-83.
58. Okubo, M.; Asakura, D.; Mizuno, Y.; Kudo, T.; Zhou, H.; Okazawa, A.; Kojima, N.; Ikedo, K.; Mizokawa, T.; Honma, I., Ion-induced transformation of magnetism in a bimetallic CuFe Prussian blue analogue. Angew. Chem. Int. Ed. 2011, 50 (28), 6269-6273.
59. Du, G.; Pang, H., Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Mater. 2021, 36, 387-408.
60. Shao, T.; Li, C.; Liu, C.; Deng, W.; Wang, W.; Xue, M.; Li, R., Electrolyte regulation enhances the stability of prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 2019, 7 (4), 1749-1755.
61. Kissinger, P. T.; Heineman, W. R., Cyclic voltammetry. J. Chem. Educ. 1983, 60 (9), 702-706.
62. Jankhunthod, S.; Moonla, C.; Watwiangkham, A.; Suthirakun, S.; Siritanon, T.; Wannapaiboon, S.; Ngamchuea, K., Understanding electrochemical and structural properties of copper hexacyanoferrate: Application in hydrogen peroxide analysis. Electrochim. Acta 2021, 394, 139147.
63. Ho, K. C.; Chen, C. Y.; Hsu, H. C.; Chen, L. C.; Shiesh, S. C.; Lin, X. Z., Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens. Bioelectron. 2004, 20 (1), 3-8.
64. Brett, A. M. O.; Ghica, M.-E., Electrochemical oxidation of quercetin. Electroanalysis 2003, 15 (22), 1745-1750.
65. Epp, J., X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead: Cambridge, 2016; pp 81-124.
66. Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead: Cambridge, 2016; pp 17-43.
67. Zampardi, G.; Warnecke, M.; Tribbia, M.; Glenneberg, J.; Santos, C.; La Mantia, F., Effect of the reactants concentration on the synthesis and cycle life of copper hexacyanoferrate for aqueous Zn-ion batteries. Electrochem. commun. 2021, 126, 107030.
68. Song, Z.; Liu, W.; Wei, X.; Zhou, Q.; Liu, H.; Zhang, Z.; Liu, G.; Zhao, Z., Charge storage mechanism of copper hexacyanoferrate nanocubes for supercapacitors. Chin. Chem. Lett. 2020, 31 (5), 1213-1216.
69. Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.; Cao, Y.; Ai, X.; Wang, J.; Yang, H., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-Ion batteries. ACS Appl. Mater. Interfaces 2016, 8 (8), 5393-5399.
70. Kessler, S.; Gonzalez-Rubio, G.; Reinalter, E. R.; Kovermann, M.; Colfen, H., Synthesis of nickel hexacyanoferrate nanocubes with tuneable dimensions via temperature-controlled Ni2+-citrate complexation. Chem. Commun. 2020, 56 (92), 14439-14442.
71. Wei, C.; Fu, X.-Y.; Zhang, L.-L.; Liu, J.; Sun, P.-P.; Gao, L.; Chang, K.-J.; Yang, X.-L., Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping. Chemical Engineering Journal 2021, 421, 127760.
72. Gorlin, M.; Halldin Stenlid, J.; Koroidov, S.; Wang, H. Y.; Borner, M.; Shipilin, M.; Kalinko, A.; Murzin, V.; Safonova, O. V.; Nachtegaal, M.; Uheida, A.; Dutta, J.; Bauer, M.; Nilsson, A.; Diaz-Morales, O., Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nat Commun 2020, 11 (1), 6181.
73. Zaib, M.; Athar, M., Electrochemical evaluation of phanerocheaete chrysosporium based carbon paste electrode with potassium ferricyanide redox system. Int. J. Electrochem. Sci. 2015, 10, 6690 - 6702.
74. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications (2nd ed.). Wiley: New York, 2002.
75. Vinothkumar, V.; Koventhan, C.; Chen, S.-M.; Abinaya, M.; Kesavan, G.; Sengottuvelan, N., Preparation of three dimensional flower-like cobalt phosphate as dual functional electrocatalyst for flavonoids sensing and supercapacitor applications. Ceram. Int. 2021, 47 (21), 29688-29706.