簡易檢索 / 詳目顯示

研究生: 林哲瑋
Lin, Che-Wei
論文名稱: 使用非工交多重接取之無人機輔助網路中多觸手網路覆蓋率延伸方案
Multi-Tentacle D2D Coverage Extension Scheme for the UAV-Assisted Network with NOMA
指導教授: 張志文
Chang, Wenson
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 53
中文關鍵詞: 無人機非正交載波多工設備間通訊無人機位置選擇功率控制覆蓋範圍擴展鏈路選擇使用者配對
外文關鍵詞: UAV, NOMA, D2D, coverage extension, UAV placement selection, power control, link selection, user pairing
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,無人機(UAV)輔助無線通信網絡已成為熱門話題。然而,如何有效地擴展無人機網絡的有限覆蓋區域仍然是一個重要的問題。在這個研究中,我們開發了一種多觸手 D2D 網絡(MTDN)來實現這個目標。具體來說,整個 MTDN 由幾個部分組成,包括非正交多接入(NOMA)空對地配對、無人機定位、地面設備的集群、鏈路選擇和傳輸功率控制。為了服務地面上分布廣泛的設備,需要精心設計集群算法和適當的無人機位置,以便可以應用設備對設備(D2D)的傳輸方案來有效地擴大無人機輔助網絡的覆蓋範圍。此外,為了提高整體傳輸速率,應良好地選擇 NOMA 空對地配對以及 D2D 傳輸鏈路。此外,應適當地控制選定鏈路的傳輸功率,以便成功抑制同時傳輸產生的干擾。模擬結果已驗證了該方案在擴大覆蓋區域和提高無人機輔助網絡的傳輸速率方面的有效性。

    Nowadays, the unmanned aerial vehicle (UAV) assisted wireless communication network has become a hot topic. However, how to effectively extend the limited coverage area of the UAV network is still an important issue. In this study, we develop a multi-tentacle D2D network (MTDN) to achieve this goal. Specifically, the overall MTDN consists of several components, including the non-orthogonal multiple access (NOMA) air-to-ground pairs, positioning for UAV, clustering for ground devices, link selection and transmission power control. In order to serve the widely spread devices on the ground, the clustering algorithm together with a proper position for UAV should be carefully designed such that the device-to-device (D2D) transmission scheme can be applied to effectively extend the coverage of the UAV assisted network. Also, to boost the overall transmission rate, the NOMA air-to-ground pairs as well as the D2D transmission links should be well selected. Moreover, the transmission power of the selected links should be properly controlled so that the interference caused by the concurrent transmissions can be successfully suppressed. The simulation results has verfied the effectiveness of the proposed scheme in extending the coverage area and raising the transmission rate for the UAV assisted network.

    Chinese Abstract i English Abstract ii Contents iv List of Tables vi List of Figures vii List of Variables viii 1 Introduction 1 2 Literature Survey 4 2.1 Clustering for UAV-Assisted Networks 4 2.2 Interference Alleviation via Power Control for the UAV-Asissted Network 5 2.3 Power Control and User pairing for the NOMA scheme 6 2.4 Other Power Control Issues for NOMA scheme 7 3 System Model and Problem Formulation 11 3.1 System Model 11 3.1.1 Channel Conditions 12 3.1.2 Signal Description 12 3.1.3 Problem Description 14 4 Problem formulation 16 4.1 UAV Placement Selection and CH Selection and Routing Path Development 19 4.2 Enhanced Joint Power Control and Link Selection Optimization 22 4.3 NOMA Power Control 29 4.3.1 Complexity compare 35 5 Simulation Results 38 6 Conclusion and Future Work 48 Bibliography 49 Vita 53

    [1] X. Liu, Z. Li, N. Zhao, W. Meng, G. Gui, Y. Chen, and F. Adachi, “Transceiver Design and Multihop D2D for UAV IoT Coverage in Disasters,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1803 –1815, 2019.
    [2] A. A. Khan, M. Abolhasan, and W. Ni, “An Evolutionary Game Theoretic Approach for Stable and Optimized Clustering in VANETs,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4501–4513, 2018.
    [3] M. F. Khan, F. Aadil, M. Maqsood, S. H. R. Bukhari, M. Hussain, and Y. Nam,“Moth Flame Clustering Algorithm for Internet of Vehicle (MFCA-IoV),” IEEE Access, vol. 7, pp. 11 613–11 629, 2019.
    [4] W. Qi, Q. Song, X. Wang, L. Guo, and Z. Ning, “SDN-Enabled Social-Aware Clustering in 5G-VANET Systems,” IEEE Access, vol. 6, pp. 28 213–28 224, 2018.
    [5] D. Zhang, H. Ge, T. Zhang, Y.-Y. Cui, X. Liu, and G. Mao, “New Multi-Hop Clustering Algorithm for Vehicular Ad Hoc Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 4, pp. 1517–1530, 2019.
    [6] M. M. Selim, M. Rihan, Y. Yang, L. Huang, Z. Quan, and J. Ma, “On the Outage Probability and Power Control of D2D Underlaying NOMA UAV-Assisted Networks,” IEEE Access, vol. 7, pp. 16 525 – 16 536, 2019.
    [7] L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal User Pairing for Downlink Non-Orthogonal Multiple Access (NOMA),” IEEE Wireless Communications Letters, vol. 8, no. 2, pp. 328 – 331, 2019.
    [8] M. Elhattab, M. A. Arfaoui, C. Assi, A. Ghrayeb, and M. Qaraqe, “Power Allocation Optimization and Decoding Order Selection in Uplink C-NOMA Networks,”IEEE Communications Letters, vol. 27, no. 1, pp. 352 – 356, 2023.
    [9] P. Dinh, M. A. Arfaoui, S. Sharafeddine, C. Assi, and A. Ghrayeb, “Joint User Pairing and Power Control for C-NOMA with Full-Duplex Device-to-Device Relaying,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019.
    [10] C. Kai, Y. Wu, M. Peng, and W. Huang, “Joint Uplink and Downlink Resource Allocation for NOMA-Enabled D2D Communications,” IEEE Wireless Communications Letters, vol. 10, no. 6, pp. 1247 – 1251, 2021.
    [11] H. Wang, J. Chen, G. Ding, and S. Wang, “D2D Communications Underlaying UAV-Assisted Access Networks,” IEEE Access, vol. 6, pp. 46 244 – 46 255, 2018.
    [12] S. Abdu, D. Kaharudin, A. Kamarul, D. G. C. Noordin, N. S. M. Shah, Q. Abdullah, and M. Mohamad, “An Efficient Energy Harvesting and Optimal Clustering Technique for Sustainable Postdisaster Emergency Communication Systems,”IEEE Access, vol. 9, pp. 78 188 – 78 202, 2021.
    [13] V. Basnayake, H. Mabed, P. Canalda, and D. N. K. Jayakody, “Enhanced Convex Hull based Clustering for High Population Density Avoidance under D2D Enabled Network,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021.
    [14] M. Elhattab, M. A. Arfaoui, C. Assi, A. Ghrayeb, and M. Qaraqe, “Power Allocation Optimization and Decoding Order Selection in Uplink C-NOMA Networks,”IEEE Communications Letters, vol. 27, no. 1, pp. 352–356, 2023.
    [15] H. Zheng, S. Hou, H. Li, Z. Song, and Y. Hao, “Power Allocation and User Clustering for Uplink MC-NOMA in D2D Underlaid Cellular Networks,” IEEE Wireless Communications Letters, vol. 7, no. 6, pp. 1030–1033, 2018.
    [16] X. Liu, J. Wang, N. Zhao, Y. Chen, S. Zhang, Z. Ding, and F. R. Yu, “Placement and Power Allocation for NOMA-UAV Networks,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 965–968, 2019.
    [17] X. Jiang, Z. Wu, Z. Yin, Z. Yang, and N. Zhao, “Power Consumption Minimization of UAV Relay in NOMA Networks,” IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 666–670, 2020.
    [18] M.-N. Nguyen, L. D. Nguyen, T. Q. Duong, and H. D. Tuan, “Real-Time Optimal Resource Allocation for Embedded UAV Communication Systems,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 225–228, 2019.

    無法下載圖示 校內:2028-08-24公開
    校外:2028-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE