| 研究生: |
洪惠瑩 hong, huei-ying |
|---|---|
| 論文名稱: |
Cytochrome P450 BM-3 作為烷烴化合物的催化試劑 Utilization of Cytochrome P450 BM3 as The Biocatalysts for Aliphatic Compounds Activation |
| 指導教授: |
黃得時
Huang, Ded-Shih 俞聖法 Yu, Sheng-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 細胞色素 |
| 外文關鍵詞: | P450 BM3 |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
來自Bacillus megaterium的細胞色素P450 BM3對受質是非常有專一性的,使用大氣中的氧氣當作氧化劑,除天然受質:脂肪酸外幾乎不接受其他的化合物。我們成功的從大腸桿菌中表現P450 BM3並且藉由金屬離子親和層析管柱純化具有His-tag的重組蛋白質。在大腸桿菌內大量表現的P450 BM3依然具有活性,且輔因子也一同被表現。這個蛋白質在加入NADPH即可催化脂肪酸。從UV/visible光譜分析中, 此His-tagged P450 BM3 內依然保有鐵的存在,且從GC/MS分析得知,此His-tagged P450 BM3也具有催化的能力。
接著,我們利用定點突變的方法改變P450 BM3的三個胺基酸序列(Leu188Gln, Phe87Val, Ala74Gly),這個突變過後的蛋白質內依然含鐵。
辛烷並不會被原生型的P450 BM3所氧化,但是此P450 BM3 mutant可以將辛烷氧化成2-辛醇, 3-辛醇, 和4-辛醇。P450 BM3 mutant也可以催化含氟的化合物,實驗結果提供我們有用的資訊在於設計新的含氟探針,以便測試P450系統對甲烷催化的能力。
Cytochrome P450 BM3 from Bacillus megaterium display a rather narrow substrate specificity. It can only hydroxylates fatty acid by using atmospheric dioxygen as an oxidant. We successfully expressed and purified the recombinant His-tagged protein (P450 BM3) from E. coli. by a simple metal-affinity chromatography. The hydroxylate activity is retained in E. coli., where the engineered P450 BM3 can be expressed at high levels and the cofactor is supplied endogeneously. This protein can retain its hydroxylate function to catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH). From UV/visible, the His-tagged P450 BM3 obtains heme. From GC/MS, the His-tagged P450 BM3 is characterized enzymeologically.
And then we engineer P450 BM3 using site-directed mutagensis. A triple mutant P450 BM3 (Leu188Gln, Phe87Val, Ala74Gly) also obtains heme. Octane is not oxidized by the wild-type enzyme, but this mutant hydroxylates octane to 2-octanol, 3-octanol, and 4-octanol. P450 BM3 mutant also has the capability to hydroxylate fluorinated compound. The outcome supplied us some imperative information to design new fluorinated probes towards direct evolving the P450 system for methane activation utilities.
(1) Appel, D., Lutz-Wahl, S., Fischer, P., Schwaneberg, U., and Schmid, R. D. (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88, 167-71.
(2) Budde, M., Morr, M., Schmid, R. D., and Urlacher, V. B. (2006) Selective hydroxylation of highly branched fatty acids and their derivatives by CYP102A1 from Bacillus megaterium. Chembiochem 7, 789-94.
(3) Cirino, P. C., Tang, Y., Takahashi, K., Tirrell, D. A., and Arnold, F. H. (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnol Bioeng 83, 729-34.
(4) Farinas, E. T., Schwaneberg, U., Glieder, A., and Arnold, F. H. (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv. Synth. Catal. 343, 601-606.
(5) Glieder, A., Farinas, E. T., and Arnold, F. H. (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20, 1135-9.
(6) Lee, T. R., Hsu, H. P., and Shaw, G. C. (2001) Transcriptional regulation of the Bacillus subtilis bscR-CYP102A3 operon by the BscR repressor and differential induction of cytochrome CYP102A3 expression by oleic acid and palmitate. J Biochem (Tokyo) 130, 569-74.
(7) Lentz, O., Urlacher, V., and Schmid, R. D. (2004) Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J Biotechnol 108, 41-9.
(8) Li, Q. S., Schwaneberg, U., Fischer, P., and Schmid, R. D. (2000) Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry 6, 1531-6.
(9) Maurer, S. C., Schulze, H., Schmid, R. D. and Urlacher, V. (2003) Immobilisation of P450 BM-3 and an NADP+ Cofactor Recycling System: Towards a Technical Application of Heme-containing Monooxygenases in Fine Chemical Synthesis. Adv. Synth. Catal. 345, 802-810.
(10) Meinhold, P., Peters, M. W., Hartwick, A., Hernandez, A. R., and Arnold, F. H. (2006) Engineering cytochrome P450 BM3 for terminal alkane hydroxylation. Adv. Synth. Catal. 348, 763-772.
(11) Meinhold, P., Peters, M. W., Chen, M. M., Takahashi, K., and Arnold, F. H. (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. Chembiochem 6, 1765-8.
(12) Miles, J. S., Munro, A. W., Rospendowski, B. N., Smith, W. E., McKnight, J., and Thomson, A. J. (1992) Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J 288 ( Pt 2), 503-9.
(13) Noble, M. A., Miles, C. S., Chapman, S. K., Lysek, D. A., MacKay, A. C., Reid, G. A., Hanzlik, R. P., and Munro, A. W. (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339 ( Pt 2), 371-9.
(14) Ost, T. W., Miles, C. S., Munro, A. W., Murdoch, J., Reid, G. A., and Chapman, S. K. (2001) Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Biochemistry 40, 13421-9.
(15) Peters, M. W., Meinhold, P., Glieder, A., and Arnold, F. H. (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 125, 13442-50.
(16) Raner, G. M., Hatchell, J. A., Dixon, M. U., Joy, T. L., Haddy, A. E., and Johnston, E. R. (2002) Regioselective peroxo-dependent heme alkylation in P450(BM3)-F87G by aromatic aldehydes: effects of alkylation on cataysis. Biochemistry 41, 9601-10.
(17) Ruettinger, R. T., Wen, L. P., and Fulco, A. J. (1989) Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264, 10987-95.
(18) Schneider, S., Wubbolts, M. G., Sanglard, D. and Witholt, B. (1998) Production of chiral hydroxy long chain fatty acids by whole cell biocatalysis of pentadecanoic acid with an E. coli recombinant containing cytochrome P450BM-3 monooxygenase. Tetrahedron: Asymmetry 9, 2833-2844.
(19) Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., and Schmid, R. D. (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal Biochem 269, 359-66.
(20) Schwaneberg, U., Sprauer, A., Schmidt-Dannert, C., and Schmid, R. D. (1999) P450 monooxygenase in biotechnology. I. Single-step, large-scale purification method for cytochrome P450 BM-3 by anion-exchange chromatography. J Chromatogr A 848, 149-59.
(21) Seelbach, K., Riebel, B., Hummel, W., Kula, M.R., Tishkov, V. I., Egorov, A. M., Wandrey, C. and Kragl, U. (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Letters 37, 1377-1380.
(22) Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang, A. H., and Wang, T. F. (2002) High-throughput screening of soluble recombinant proteins. Protein Sci 11, 1714-9.
(23) Tishkov, V. I., Galkin, A. G., Fedorchuk, V. V., Savitsky, P. A., Rojkova, A. M., Gieren, H., and Kula, M. R. (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 64, 187-93.
(24) Wen, L. P., and Fulco, A. J. (1987) Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts. J Biol Chem 262, 6676-82.