| 研究生: |
陳彥廷 Chen, Yan-Ting |
|---|---|
| 論文名稱: |
適用於高度電離層影響之單一時刻GNSS RTK定位演算法 An algorithm for single-epoch GNSS RTK positioning under higher ionospheric influence |
| 指導教授: |
楊名
Yang, Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 全球導航衛星系統 、即時動態定位 、單一時刻週波值解算 、電離層延遲 |
| 外文關鍵詞: | GNSS, RTK, Single-epoch, Ambiguity resolution, Ionospheric delay |
| 相關次數: | 點閱:121 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成功的整數週波值 (Ambiguity Resolution, AR)解算是GNSS (Global Navigation Satellite System) RTK (Real-Time Kinematic)獲得公分級定位的主要關鍵。然而,電離層延遲量為造成單一時刻GNSS RTK整數週波值解算錯誤主要的誤差來源。由於北斗導航衛星系統中的地球靜止衛星 (Geostationary Earth Orbit, GEO)分布於相近緯度 (赤道)且近乎靜止不動,因此可預期各個GEO衛星訊號所受到的電離層延遲狀況類似。所以本研究以GEO衛星的特性為基礎提出一個新的單一時刻GNSS RTK演算法,此方法利用了partial fixing的策略來解算整數週波值。實驗中,探討電離層高度活動之情況,並藉由與現有的演算法比較,分析單一時刻整數週波值解算的效能。測試資料由儀器Trimble NetR9為蒐集,於中午及午後所觀測之短基線 (<10 km)資料。實驗成果顯示,目前的演算法在受到較大電離層延遲量影響時,無法提供可靠的單一時刻週波值解算成果,然而本研究所提出之演算法能夠大幅地提升單一時刻週波值解算成果之解算正確率,在電離層高度活動下依然提供穩定可靠的單一時刻整數週波值解算成果。
The key to reach centimeter-level single-epoch GNSS real-time kinematic (RTK) positioning depends on successful integer ambiguity resolution (AR). However, the ionospheric delay is a major error source to affect single-epoch ambiguity resolution. Since the geostationary earth orbit (GEO) satellites of the BeiDou system are distributed around the same latitude (equator) and nearly motionless, it is expected that the ionospheric condition of the adjacent GEO satellites are similar. Therefore, based on the characteristic of BeiDou GEO satellites, this study proposes a new algorithm for single-epoch AR under high ionospheric influence. The proposed algorithm resolves integer ambiguities by a strategy of partial fixing, which firstly resolves the integer ambiguities composed of the GEO satellites and then resolves the integer ambiguities composed of the other satellites. Experiments were conducted to compare the current algorithms and the proposed algorithm under high ionosphere influence for the single-epoch AR performance. Experimental short baseline data (<10 km) were collected at noon or in the afternoon with Trimble NetR9 in the low latitude region (Taiwan). The results indicate that the current algorithms cannot provide reliable single-epoch AR performance due to high ionosphere influence. By contrast, the proposed algorithm can significantly improve the AR performance.
中華人民共和國國務院新聞辦公室 (2016) 中國北斗衛星導航系統。 人民出版社, 北京, 中國。
劉正彥 (2008) http://csep10.phys.utk.edu。
Andrea, DT, Alessandro, C (2015) An analysis of intersystem biases for multi-GNSS positioning. GPS Solutions 19 (2):297-307.
Anderson, DN (1973) A theoretical study of the ionospheric F region equatorial anomaly-I. Theory. Planetary and space seience 21 (3):409-419.
Appleton, EV (1946) Two Anomalies in the Ionosphere. Nature 157:691-691.
Bevis, M, Businger, S, Herring, TA, Rocken, C, Anthes, RA, Ware, RH (1992) GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres 97 (D14):15787-15801.
Bock, Y, Nikolaidis, RM, De, J, Paul, J, Bevis, M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. Journal of Geophysical Research: Solid Earth 105 (B12):28223-28253.
Bossler, JD, Goad, CC, Bender, PL (1980) Using the Global Positioning System (GPS) for geodetic positioning. Bulletin géodésique 54 (4):553-563.
Chen, W (2014) Enhanced Precision and Availability for Geo-Positioning using a Hybrid System of GPS, Beidou and Ground Based Augmentation. In: The 5th cross strait conference, Hong Kong, 25 November 2014.
Chu, FY, Yang, M (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solution 18 (2):263-272.
CSNO (2013a) BeiDou navigation satellite system open service performance standard. China Satellite Navigation Office, Beijing, China.
CSNO (2013b) BeiDou navigation satellite system signal in space interface control document open service signal (Version 2.0). China Satellite Navigation Office, Beijing, China.
Dai, L (2000) Dual-Frequency GPS/GLONASS Real-Time Ambiguity Resolution for Medium-Range Kinematic Positioning. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 19 - 22 2000. pp 1071-1080.
Deng, C, Tang, W, Liu, J, Shi, C (2014) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions 18 (3):375-386.
Dow, JM, Neilan, RE, Rizos, C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy 83 (3):191-198.
Ebel, A (1970) Temporal and spatial changes of the electron content of the ionosphere. Journal of Atmospheric and Terrestrial Physics 32 (10):1649-1660.
Euler, HJ, Schaffrin, B (1991) On a Measure for the Discernibility between Different Ambiguity Solutions in the Static-Kinematic GPS-Mode. In: Schwarz K-P, Lachapelle G (eds) Kinematic Systems in Geodesy, Surveying, and Remote Sensing: Symposium No. 107 Banff, Alberta, Canada, September 10–13, 1990. Springer New York, New York, pp 285-295
European space agency, ESA. http://www.esa.int/ESA.
Feng, YM (2003) Combined Galileo and GPS: A technical perspective. Journal of global positioning systems 2 (1):67-72.
Feng, YM, Wang, JL (2007) Exploring GNSS RTK performance benefits with GPS and virtual Galileo measurements. In: Proceedings of the 2007 national technical meeting of the institute of navigation, San Diego, CA, January 22-24, 2007. pp 218-226.
Feng, YM (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy 82 (12):847-862.
Geisler, I (2006) Performance improvement of network RTK positioning.
Gioia, C, Gaglione, S, Borio, D (2015) Inter-system Bias: Stability and impact on multi-constellation positioning. In: Metrology for Aerospace (MetroAeroSpace), 2015 IEEE, 4-5 June 2015 2015. pp 103-108.
He, H, Li, J, Yang, Y, Xu, J, Guo, H, Wang, A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions 18 (3):393-403.
Hegarty, CJ, Chatre, E (2008) Evolution of the Global Navigation SatelliteSystem (GNSS). Proceedings of the IEEE 96 (12):1902-1917.
Hofmann-Wellenhof, B, Lichtenegger, H, Wasle, E (2008) GNSS – Global Navigation Satellite Systems. Springer-Verlag, Wien Graz.
Hopfield, HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research: Atmospheres 74 (18):4487-4499.
InsideGNSS, IG. http://www.insidegnss.com/.
International GNSS service, IGS. http://www.igs.org/.
Issler, JL, Lestarquit, L, Grondin, M (2001) Missions and radionavigation payloads. In: Course books for the summer school in Alpbach, Austria, July 17–26.
Jenkins, B, Bailey, GJ, Abdu, MA, Batista, IS, Balan, N (1997) Observations and model calculations of an additional layer in the topside ionosphere above Fortaleza, Brazil. Annales Geophysicae 15 (6):753-759.
Ji, SY, Chen, W, Zhao, CM, Ding, XL, Chen, YQ (2007) Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solutions 11 (4):259-268.
Jin, R, Jin, S, Tao, X (2014) Ionospheric Anomalies During the March 2013 Geomagnetic Storm from BeiDou Navigation Satellite System (BDS) Observations. In: China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 97-104.
Joosten, P, Tiberius, C (2002) LAMBDA: FAQs. GPS Solutions 6 (1):109-114.
Klobuchar, JA (1987) Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems AES-23 (3):325-331.
Koch, K (1999) Parameter estimation and hypothesis testing in linear models, 2nd edition. Springer, Berlin.
Kunitsyn, VE, Padokhin, AM, Kurbatov, GA, Yasyukevich, YV, Morozov, YV (2015) Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions:1-8.
Lee, IS, Ge, L (2006) The performance of RTK-GPS for surveying under challenging environmental conditions. Earth, Planets and Space 58 (5):515-522.
Leick, A (2004) GPS satellite surveying, 3rd edition. John Willey & Sons, New York.
Lejeune, S, Warnant, R (2008) A novel method for the quantitative assessment of the ionosphere effect on high accuracy GNSS applications, which require ambiguity resolution. Journal of Atmospheric and Solar-Terrestrial Physics 70 (6):889-900.
Li, H, Dang, Y, Jin, ZB, Yang, F (2013) Resarch on spatio tempora unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of geodesy and geodynamics 33 (4):73-78.
Li, BF, Verhagen, S, Teunissen, PJG (2014) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solutions 18 (2):283-296.
Ma, LH, Han, YB, Yin, ZQ (2009) Periodicities in Global Mean TEC from GNSS Observations. Earth, Moon, and Planets 105 (1):3-10.
Michael, J, DUNN, DISL, DAF (2013) Global positioning systems directorate system engineering & integration: interface specification IS-GPS-200, Global positioning system directorate, USA
Misera, P, Enge, P (2006) Global positioning system: signals, measurements and performance, 2nd edition. Ganga-Jamuna Press, Lincoln, USA.
Nadarajah, N, Teunissen, PJG, Raziq, N (2013) BeiDou Inter-Satellite-Type Bias Evaluation and Calibration for Mixed Receiver Attitude Determination. Sensors 13 (7):9435-9463.
Namie, H, Yasuda, A, Sasano, K (2000) RTK-GPS positioning by TV audio-MPX-data broadcast in Japan. Earth Planets Space 52 (10):847-850.
Odijk, D (1999) Stochastic modelling of the ionosphere for fast GPS ambiguity resolution. In: Schwarz K-P (ed) Geodesy Beyond 2000: The Challenges of the First Decade IAG General Assembly Birmingham, July 19–30, 1999. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 387-392.
Odijk, D (2000) Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000. pp 1113-1123.
Odijk, D, Teunissen, PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions 17 (4):521-533.
Odolinski, R, Teunissen, PJG, Odijk, D (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions 19 (1):151-163.
Official U.S. Government information about Global Positioning System(GPS) and related topics, GPS.GOV. http://www.gps.gov/.
Parametry Zemli 1990(PZ-90.11) reference document (2014) Central research institute of Ministry of Defense of the Russian Federation.
Pedro, FFNF (2013) Positioning with combined GPS and GLONASS pbservations. Master, Department of aerospace engineering, Tecnico Lisboa.
Pirti, A, Arslan, N, Deveci, B, Aydin, O, Erkaya, H, Hosbas, RG (2009) Real-Time Kinematic GPS for Cadastral Surveying. Survey Review 41 (314):339-351.
Pratt, M, Burke, B, Misera, P (1998) Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data. In: Proceedings of the ION GPS 1998, Nashville, Tennessee, September 15-18, 1998. pp. 389-398.
Reid, JF, Zhang, Q, Noguchi, N, Dickson, M (2000) Agricultural automatic guidance research in North America. Computers and Electronics in Agriculture 25 (1–2):155-167.
Rizos, C (2002) Making Sense of GNSS Techniques. In: Manual of Geospatial Science and Technology, Second Edition. CRC Press, pp 173-190.
Rizos, C (2007) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solutions 11 (3):151-158.
Rose, DC, Ziauddin, S (1962) The polar cap absorption effect. Space Science Reviews 1 (1):115-134.
Russian federal space agency (2012) GLONASS Status. In: ICG WG-A meeting, Olstyn, Poland, 23-27 July 2012.
Schaer, S (1999) Mapping and predicting the earth’s ionosphere using the Global Positioning System. Dissertation, Unuversity of Bern, Switzerland.
Seeber, G (2003) Satellite geodesy, 2nd edition. Walter de Gruyter, Berlin.
Tang, WM, Deng, CL, Shi, C, Liu, JG (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions 18 (3):335-344.
Teunissen, PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70 (1):65-82.
Teunissen, PJG, Joosten, P, Tiberius, CA (2002) Comparison of TCAR, CIR and LAMBDA GNSS Ambiguity Resolution. In: Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September 24 - 27 2002. pp 2799-2808.
Teunissen, PJG, Verhagen, S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Survey Review 41 (312):138-151.
Teunissen, PJG, Odolinski, R, Odijk, D (2014) Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy 88 (4):335-350.
Verhagen, S (2004) Integer ambiguity validation: an open problem? GPS Solutions 8 (1):36-43.
Wang, JL (2000) An approach to GLONASS ambiguity resolution. Journal of Geodesy 74 (5):421-430.
Wang, YL (2008) Application of GPS RTK and total station in pipeline enginneering survey-A case study of West-East gas pipeline second-line wenmi, turpan.
Wang, L, Li, Z, Yuan, H, Zhou, K (2013) Validation and analysis of the performance of dual-frequency single-epoch BDS/GPS/GLONASS relative positioning.
Wanninger, L (1993) Effects on the equatorial ionosphere on GPS. GPS world 4 (7):48-54.
Wanninger, L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy 86 (2):139-148
Wei, Z (2008) China geodetic coordinate system 2000 and its comparison with WGS84. Journal of geodesy and geodynamics 28 (5):1-5.
Wells, D, Beck, N, Delikaraoglou, D, Kleusberg, A, Krakiwsky, EJ, Lachapelle, G, Langley, RB, Nakiboglu, M, Schwarz, KP, Tranquilla, JM, Vanicek, P (1986) Guide to GPS positioning. Canadian GPS Associates, Frederiction.
Wu, XL, Zhou, JH, Tang, B, Cao, YL, Fan, JC (2014) Evaluation of COMPASS ionospheric grid. GPS Solutions 18 (4):639-649.
Yeh, KC, Liu, CH (1972) Theory of ionospheric waves. Academic Press, New York.
Zhang, R, Song, WW, Yao, YB, Shi, C, Lou, YD, Yi, WT (2015) Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China. GPS Solutions 19 (4):649-658.
Zhang, W, Cannon, ME, Julien, O, Alves, P (2003) Investigation of Combined GPS/GALILEO Cascading Ambiguity Resolution Schemes. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, September 9 - 12 2003. pp 2599-2610.
Zhao, CM, Ou, JK, Yuan, YB (2005) Positioning accuracy and reliability of Galileo, integrated GPS-Galiloe system based on single positioning model. Chinese science bulletin 50 (12):1252-1260.
Zhao, W, Zhao, N, Zhao, H, Zhao, J, Xue, F, Hu, C, Wang, Y (2013) Analysis of the Pseudorange Multipath Impact on Dual-Frequency Ionospheric Delay Correction in Compass System. In: China Satellite Navigation Conference (CSNC) 2013 Proceedings: BeiDou/GNSS Navigation Applications Test & Assessment Technology User Terminal Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 355-365.