簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yan-Ting
論文名稱: 適用於高度電離層影響之單一時刻GNSS RTK定位演算法
An algorithm for single-epoch GNSS RTK positioning under higher ionospheric influence
指導教授: 楊名
Yang, Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 116
中文關鍵詞: 全球導航衛星系統即時動態定位單一時刻週波值解算電離層延遲
外文關鍵詞: GNSS, RTK, Single-epoch, Ambiguity resolution, Ionospheric delay
相關次數: 點閱:121下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成功的整數週波值 (Ambiguity Resolution, AR)解算是GNSS (Global Navigation Satellite System) RTK (Real-Time Kinematic)獲得公分級定位的主要關鍵。然而,電離層延遲量為造成單一時刻GNSS RTK整數週波值解算錯誤主要的誤差來源。由於北斗導航衛星系統中的地球靜止衛星 (Geostationary Earth Orbit, GEO)分布於相近緯度 (赤道)且近乎靜止不動,因此可預期各個GEO衛星訊號所受到的電離層延遲狀況類似。所以本研究以GEO衛星的特性為基礎提出一個新的單一時刻GNSS RTK演算法,此方法利用了partial fixing的策略來解算整數週波值。實驗中,探討電離層高度活動之情況,並藉由與現有的演算法比較,分析單一時刻整數週波值解算的效能。測試資料由儀器Trimble NetR9為蒐集,於中午及午後所觀測之短基線 (<10 km)資料。實驗成果顯示,目前的演算法在受到較大電離層延遲量影響時,無法提供可靠的單一時刻週波值解算成果,然而本研究所提出之演算法能夠大幅地提升單一時刻週波值解算成果之解算正確率,在電離層高度活動下依然提供穩定可靠的單一時刻整數週波值解算成果。

    The key to reach centimeter-level single-epoch GNSS real-time kinematic (RTK) positioning depends on successful integer ambiguity resolution (AR). However, the ionospheric delay is a major error source to affect single-epoch ambiguity resolution. Since the geostationary earth orbit (GEO) satellites of the BeiDou system are distributed around the same latitude (equator) and nearly motionless, it is expected that the ionospheric condition of the adjacent GEO satellites are similar. Therefore, based on the characteristic of BeiDou GEO satellites, this study proposes a new algorithm for single-epoch AR under high ionospheric influence. The proposed algorithm resolves integer ambiguities by a strategy of partial fixing, which firstly resolves the integer ambiguities composed of the GEO satellites and then resolves the integer ambiguities composed of the other satellites. Experiments were conducted to compare the current algorithms and the proposed algorithm under high ionosphere influence for the single-epoch AR performance. Experimental short baseline data (<10 km) were collected at noon or in the afternoon with Trimble NetR9 in the low latitude region (Taiwan). The results indicate that the current algorithms cannot provide reliable single-epoch AR performance due to high ionosphere influence. By contrast, the proposed algorithm can significantly improve the AR performance.

    摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 第一章 緒論 1 §1-1研究背景 1 §1-1-1 現代化GPS 2 §1-1-2 現代化GLONASS 3 §1-1-3 BeiDou系統 5 §1-1-4 Galileo系統 7 §1-2文獻回顧 7 §1-3研究動機及目的 11 §1-4研究方法 12 第二章 衛星定位技術基本原理 14 §2-1衛星定位觀測量 14 §2-1-1虛擬距離觀測量 14 §2-1-2載波相位觀測量 16 §2-2衛星定位誤差來源 18 §2-2-1軌道誤差 18 §2-2-2時錶誤差 20 §2-2-3大氣層延遲誤差 21 §2-2-4天線相位中心偏差 23 §2-2-5多路徑效應 24 §2-2-6各導航衛星系統間偏差量 (Inter-system bias) 25 §2-2-7不同衛星種類間偏差量 (Inter-satellite-type bias) 26 §2-3相對定位原理 26 §2-3-1二次差分觀測量 27 §2-3-2最小二乘平差法 28 §2-3-3誤差傳播 31 §2-3-4整數週波未定值整數搜尋方法: LAMBDA 33 §2-3-5整數週波未定值成果驗證 37 第三章 電離層及電離層延遲之探討 38 §3-1電離層簡介 38 §3-2電離層結構 39 §3-3電離層之變化特性 40 §3-3-1隨空間位置變化 41 §3-3-2隨時間變化 44 §3-4電離層對衛星訊號之影響 47 §3-5電離層穿刺點簡介 49 §3-6二次差分電離層延遲量計算 52 §3-7北斗系統二次差分電離層延遲量分析 – 以GEO衛星為主衛星 53 第四章 單一時刻GNSS RTK定位技術 59 §4-1 多系統觀測量結合 60 §4-1-1時間系統 61 §4-1-2坐標系統 62 §4-1-3主衛星 (pivot satellite)之選擇 63 §4-2 二次差分載波相位觀測量線性組合: 寬巷觀測量 65 §4-3 單一時刻整數週波值解算方法 68 §4-3-1忽略電離層延遲量之模型 (Ionosphere-biased model) 69 §4-3-2考慮電離層延遲量之模型 (Ionosphere-unbiased model) 74 §4-3-3整合模型 (Mixed model) 78 第五章 實驗與成果分析 83 §5-1實驗方法與流程 83 §5-2實驗資料 83 §5-3單一時刻整數週波值解算效能分析 85 §5-3-1單一時刻整數週波值解算效能分析之方法 85 §5-3-2實驗一: 二次差分電離層延遲量之影響 86 §5-3-3實驗二: 不同先驗二次差分電離層延遲量精度之分析 97 第六章 結論與建議 106 參考文獻 109

    中華人民共和國國務院新聞辦公室 (2016) 中國北斗衛星導航系統。 人民出版社, 北京, 中國。

    劉正彥 (2008) http://csep10.phys.utk.edu。

    Andrea, DT, Alessandro, C (2015) An analysis of intersystem biases for multi-GNSS positioning. GPS Solutions 19 (2):297-307.

    Anderson, DN (1973) A theoretical study of the ionospheric F region equatorial anomaly-I. Theory. Planetary and space seience 21 (3):409-419.

    Appleton, EV (1946) Two Anomalies in the Ionosphere. Nature 157:691-691.

    Bevis, M, Businger, S, Herring, TA, Rocken, C, Anthes, RA, Ware, RH (1992) GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres 97 (D14):15787-15801.

    Bock, Y, Nikolaidis, RM, De, J, Paul, J, Bevis, M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. Journal of Geophysical Research: Solid Earth 105 (B12):28223-28253.

    Bossler, JD, Goad, CC, Bender, PL (1980) Using the Global Positioning System (GPS) for geodetic positioning. Bulletin géodésique 54 (4):553-563.

    Chen, W (2014) Enhanced Precision and Availability for Geo-Positioning using a Hybrid System of GPS, Beidou and Ground Based Augmentation. In: The 5th cross strait conference, Hong Kong, 25 November 2014.

    Chu, FY, Yang, M (2014) GPS/Galileo long baseline computation: method and performance analyses. GPS Solution 18 (2):263-272.

    CSNO (2013a) BeiDou navigation satellite system open service performance standard. China Satellite Navigation Office, Beijing, China.

    CSNO (2013b) BeiDou navigation satellite system signal in space interface control document open service signal (Version 2.0). China Satellite Navigation Office, Beijing, China.

    Dai, L (2000) Dual-Frequency GPS/GLONASS Real-Time Ambiguity Resolution for Medium-Range Kinematic Positioning. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 19 - 22 2000. pp 1071-1080.

    Deng, C, Tang, W, Liu, J, Shi, C (2014) Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions 18 (3):375-386.

    Dow, JM, Neilan, RE, Rizos, C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy 83 (3):191-198.

    Ebel, A (1970) Temporal and spatial changes of the electron content of the ionosphere. Journal of Atmospheric and Terrestrial Physics 32 (10):1649-1660.

    Euler, HJ, Schaffrin, B (1991) On a Measure for the Discernibility between Different Ambiguity Solutions in the Static-Kinematic GPS-Mode. In: Schwarz K-P, Lachapelle G (eds) Kinematic Systems in Geodesy, Surveying, and Remote Sensing: Symposium No. 107 Banff, Alberta, Canada, September 10–13, 1990. Springer New York, New York, pp 285-295

    European space agency, ESA. http://www.esa.int/ESA.

    Feng, YM (2003) Combined Galileo and GPS: A technical perspective. Journal of global positioning systems 2 (1):67-72.

    Feng, YM, Wang, JL (2007) Exploring GNSS RTK performance benefits with GPS and virtual Galileo measurements. In: Proceedings of the 2007 national technical meeting of the institute of navigation, San Diego, CA, January 22-24, 2007. pp 218-226.

    Feng, YM (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of Geodesy 82 (12):847-862.

    Geisler, I (2006) Performance improvement of network RTK positioning.

    Gioia, C, Gaglione, S, Borio, D (2015) Inter-system Bias: Stability and impact on multi-constellation positioning. In: Metrology for Aerospace (MetroAeroSpace), 2015 IEEE, 4-5 June 2015 2015. pp 103-108.

    He, H, Li, J, Yang, Y, Xu, J, Guo, H, Wang, A (2014) Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions 18 (3):393-403.

    Hegarty, CJ, Chatre, E (2008) Evolution of the Global Navigation SatelliteSystem (GNSS). Proceedings of the IEEE 96 (12):1902-1917.

    Hofmann-Wellenhof, B, Lichtenegger, H, Wasle, E (2008) GNSS – Global Navigation Satellite Systems. Springer-Verlag, Wien Graz.

    Hopfield, HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research: Atmospheres 74 (18):4487-4499.

    InsideGNSS, IG. http://www.insidegnss.com/.

    International GNSS service, IGS. http://www.igs.org/.

    Issler, JL, Lestarquit, L, Grondin, M (2001) Missions and radionavigation payloads. In: Course books for the summer school in Alpbach, Austria, July 17–26.

    Jenkins, B, Bailey, GJ, Abdu, MA, Batista, IS, Balan, N (1997) Observations and model calculations of an additional layer in the topside ionosphere above Fortaleza, Brazil. Annales Geophysicae 15 (6):753-759.

    Ji, SY, Chen, W, Zhao, CM, Ding, XL, Chen, YQ (2007) Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solutions 11 (4):259-268.

    Jin, R, Jin, S, Tao, X (2014) Ionospheric Anomalies During the March 2013 Geomagnetic Storm from BeiDou Navigation Satellite System (BDS) Observations. In: China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 97-104.

    Joosten, P, Tiberius, C (2002) LAMBDA: FAQs. GPS Solutions 6 (1):109-114.

    Klobuchar, JA (1987) Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems AES-23 (3):325-331.

    Koch, K (1999) Parameter estimation and hypothesis testing in linear models, 2nd edition. Springer, Berlin.

    Kunitsyn, VE, Padokhin, AM, Kurbatov, GA, Yasyukevich, YV, Morozov, YV (2015) Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions:1-8.

    Lee, IS, Ge, L (2006) The performance of RTK-GPS for surveying under challenging environmental conditions. Earth, Planets and Space 58 (5):515-522.

    Leick, A (2004) GPS satellite surveying, 3rd edition. John Willey & Sons, New York.

    Lejeune, S, Warnant, R (2008) A novel method for the quantitative assessment of the ionosphere effect on high accuracy GNSS applications, which require ambiguity resolution. Journal of Atmospheric and Solar-Terrestrial Physics 70 (6):889-900.

    Li, H, Dang, Y, Jin, ZB, Yang, F (2013) Resarch on spatio tempora unification of BDS/GPS/GLONASS multi-mode fusion navigation and positioning. Journal of geodesy and geodynamics 33 (4):73-78.

    Li, BF, Verhagen, S, Teunissen, PJG (2014) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solutions 18 (2):283-296.

    Ma, LH, Han, YB, Yin, ZQ (2009) Periodicities in Global Mean TEC from GNSS Observations. Earth, Moon, and Planets 105 (1):3-10.

    Michael, J, DUNN, DISL, DAF (2013) Global positioning systems directorate system engineering & integration: interface specification IS-GPS-200, Global positioning system directorate, USA

    Misera, P, Enge, P (2006) Global positioning system: signals, measurements and performance, 2nd edition. Ganga-Jamuna Press, Lincoln, USA.

    Nadarajah, N, Teunissen, PJG, Raziq, N (2013) BeiDou Inter-Satellite-Type Bias Evaluation and Calibration for Mixed Receiver Attitude Determination. Sensors 13 (7):9435-9463.

    Namie, H, Yasuda, A, Sasano, K (2000) RTK-GPS positioning by TV audio-MPX-data broadcast in Japan. Earth Planets Space 52 (10):847-850.

    Odijk, D (1999) Stochastic modelling of the ionosphere for fast GPS ambiguity resolution. In: Schwarz K-P (ed) Geodesy Beyond 2000: The Challenges of the First Decade IAG General Assembly Birmingham, July 19–30, 1999. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 387-392.

    Odijk, D (2000) Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over Medium Distances. In: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000. pp 1113-1123.

    Odijk, D, Teunissen, PJG (2013) Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions 17 (4):521-533.

    Odolinski, R, Teunissen, PJG, Odijk, D (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions 19 (1):151-163.

    Official U.S. Government information about Global Positioning System(GPS) and related topics, GPS.GOV. http://www.gps.gov/.

    Parametry Zemli 1990(PZ-90.11) reference document (2014) Central research institute of Ministry of Defense of the Russian Federation.

    Pedro, FFNF (2013) Positioning with combined GPS and GLONASS pbservations. Master, Department of aerospace engineering, Tecnico Lisboa.

    Pirti, A, Arslan, N, Deveci, B, Aydin, O, Erkaya, H, Hosbas, RG (2009) Real-Time Kinematic GPS for Cadastral Surveying. Survey Review 41 (314):339-351.

    Pratt, M, Burke, B, Misera, P (1998) Single-epoch integer ambiguity resolution with GPS-GLONASS L1-L2 data. In: Proceedings of the ION GPS 1998, Nashville, Tennessee, September 15-18, 1998. pp. 389-398.

    Reid, JF, Zhang, Q, Noguchi, N, Dickson, M (2000) Agricultural automatic guidance research in North America. Computers and Electronics in Agriculture 25 (1–2):155-167.

    Rizos, C (2002) Making Sense of GNSS Techniques. In: Manual of Geospatial Science and Technology, Second Edition. CRC Press, pp 173-190.

    Rizos, C (2007) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solutions 11 (3):151-158.

    Rose, DC, Ziauddin, S (1962) The polar cap absorption effect. Space Science Reviews 1 (1):115-134.

    Russian federal space agency (2012) GLONASS Status. In: ICG WG-A meeting, Olstyn, Poland, 23-27 July 2012.

    Schaer, S (1999) Mapping and predicting the earth’s ionosphere using the Global Positioning System. Dissertation, Unuversity of Bern, Switzerland.

    Seeber, G (2003) Satellite geodesy, 2nd edition. Walter de Gruyter, Berlin.

    Tang, WM, Deng, CL, Shi, C, Liu, JG (2014) Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions 18 (3):335-344.

    Teunissen, PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy 70 (1):65-82.

    Teunissen, PJG, Joosten, P, Tiberius, CA (2002) Comparison of TCAR, CIR and LAMBDA GNSS Ambiguity Resolution. In: Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September 24 - 27 2002. pp 2799-2808.

    Teunissen, PJG, Verhagen, S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Survey Review 41 (312):138-151.

    Teunissen, PJG, Odolinski, R, Odijk, D (2014) Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy 88 (4):335-350.

    Verhagen, S (2004) Integer ambiguity validation: an open problem? GPS Solutions 8 (1):36-43.

    Wang, JL (2000) An approach to GLONASS ambiguity resolution. Journal of Geodesy 74 (5):421-430.

    Wang, YL (2008) Application of GPS RTK and total station in pipeline enginneering survey-A case study of West-East gas pipeline second-line wenmi, turpan.

    Wang, L, Li, Z, Yuan, H, Zhou, K (2013) Validation and analysis of the performance of dual-frequency single-epoch BDS/GPS/GLONASS relative positioning.

    Wanninger, L (1993) Effects on the equatorial ionosphere on GPS. GPS world 4 (7):48-54.

    Wanninger, L (2012) Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy 86 (2):139-148

    Wei, Z (2008) China geodetic coordinate system 2000 and its comparison with WGS84. Journal of geodesy and geodynamics 28 (5):1-5.

    Wells, D, Beck, N, Delikaraoglou, D, Kleusberg, A, Krakiwsky, EJ, Lachapelle, G, Langley, RB, Nakiboglu, M, Schwarz, KP, Tranquilla, JM, Vanicek, P (1986) Guide to GPS positioning. Canadian GPS Associates, Frederiction.

    Wu, XL, Zhou, JH, Tang, B, Cao, YL, Fan, JC (2014) Evaluation of COMPASS ionospheric grid. GPS Solutions 18 (4):639-649.

    Yeh, KC, Liu, CH (1972) Theory of ionospheric waves. Academic Press, New York.

    Zhang, R, Song, WW, Yao, YB, Shi, C, Lou, YD, Yi, WT (2015) Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China. GPS Solutions 19 (4):649-658.

    Zhang, W, Cannon, ME, Julien, O, Alves, P (2003) Investigation of Combined GPS/GALILEO Cascading Ambiguity Resolution Schemes. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, September 9 - 12 2003. pp 2599-2610.

    Zhao, CM, Ou, JK, Yuan, YB (2005) Positioning accuracy and reliability of Galileo, integrated GPS-Galiloe system based on single positioning model. Chinese science bulletin 50 (12):1252-1260.

    Zhao, W, Zhao, N, Zhao, H, Zhao, J, Xue, F, Hu, C, Wang, Y (2013) Analysis of the Pseudorange Multipath Impact on Dual-Frequency Ionospheric Delay Correction in Compass System. In: China Satellite Navigation Conference (CSNC) 2013 Proceedings: BeiDou/GNSS Navigation Applications Test & Assessment Technology User Terminal Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 355-365.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE