簡易檢索 / 詳目顯示

研究生: 黃俊銘
Huang, Chun-Ming
論文名稱: 無迴光器之光纖光柵分碼多工網路編解碼裝置對多重擷取干擾抑制之探討
Suppression of Multiple Access Noises in Circulator-Free Fiber-Grating Optical CDMA Network Codecs
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 63
中文關鍵詞: 布雷格光柵相位強度引發雜訊多重擷取干擾
外文關鍵詞: Fiber Bragg Grating, Multiple Access Interference, phase induced intensity noise
相關次數: 點閱:222下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光分碼多重存取技術(optical code-division multiple-access, OCDMA)允許多個使用者同時非同步地存取網路系統,因此適合應用於區域網路(local area networks, LANs)中。早期的光分碼多重存取技術系統是在時域上將輸入訊號和近似正交碼序列來進行調變,但這樣所需的碼長很長,且系統使用者的總數受限於系統中的多重擷取干擾。因此,我們利用頻振幅編碼(spectral-amplitude-coding, SAC)的光分碼多重存取技術中來消除其他使用者的多重擷取干擾(multiple access interference, MAI),而萃取出預期使用者的信號。
      在這篇論文中,我們提出一個實現光分碼多工系統的頻域編解碼裝置並以實驗驗證之。此編解碼裝置是利用布雷格光柵設計而成。我們在此是利用布雷格光柵其穿透頻譜的特性,來架構我們的編解碼器。然而,它卻提供了幾個重要的優點。首先,在不採用迴光器的架構之下,系統實現成本得以降低。其次,我們的架構可以解決路遊時間效應的問題。但因我們是利用布雷格光柵其穿透頻譜的特性來做編解碼裝置,因此會導致一些不要的波長也會一起傳送,這將會在接收端引發嚴重的相位引致強度雜訊。因此,我們使用了一個雜訊濾波器來過濾這些不需要的波長。此外,我們還能些微地減少功率損耗問題。在本實驗中,為了考量多重擷取干擾可能由非平坦光源所造成,因此我們盡量將頻譜切割在寬頻光源其較平坦的中心區域,以做為部份的補償。量測結果證明我們所提議的方法是成功並且可實行的。

      Optical code division multiple-access (OCDMA) is one class of system that has the advantages of being able to provide each user asynchronous accesses to the network, and is thought to be a more suitable application in local-area network. Early incoherent optical CDMA systems used pseudo-orthogonal sequences to encode signals in the time domain, but the codes were long and multiple access interference (MAI) limited the number of simultaneous users. Thus, spectral-amplitude-coding (SAC) optical CDMA systems were proposed to eliminate the influence of MAI. 
      A realization technique of optical CDMA spectral-coding with fiber-Bragg-grating (FBG)-based codecs was proposed and experimentally demonstrated. The proposal utilizes the transmissive spectral characteristics of FBGs to construct our FBG encoder/decoder which is much different from those published in the past. Based on the correlation subtractions of nearly orthogonal codes with balanced photo-detectors, the multiple access interference can be eliminated perfectly. Besides, it provides several important advantages. First, the cost is lowered due to our circulator-free architecture. Second, the round-trip time problem is resolved. Third, the noise eliminator we used can eliminate the phase-induse intensity noise (PIIN) caused by using the transmissive spectrum characteristic of FGB effectively. Besides, we also can reduce the power loss issue slightly. In order to counter the multiple-access-interference (MAI) effects caused by non-flattened optical sources, the spectral amplitude is sliced in the more flattened central region of broadband optical sources for partial compensation in our experiment. Our measurements verify that our proposed scheme is successful and practicable.

    CHAPTER1 INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 THE DEVELOPMENT OF OCDMA 2 1.3 MOTIVATION AND OBJECTIVE OF THE RESEARCH 3 1.4 SECTIONS PREVIEW 4 CHAPTER 2 OVERVIEWS ON FIBER GRATINGS AND OPTICAL CDMA CODING 6 2.1 INTRODUCTION 6 2.2 FUNDAMENTALS OF FIBER-BRAGG-GRATINGS (FBGS) 6 2.3 OVERVIEWS ON OPTICAL CDMA CODING 9 2.3.1 Spectral Amplitude Coding (SAC) 9 2.3.2 Maximal-Length Sequence (M-sequence) Codes 11 2.3.3 Walsh-Hadamard Codes 11 2.3.4 Modified Quadratic Congruence (MQC) Codes 12 2.3.5 Wavelength-Hopping/Time-Spreading Coding 14 CHAPTER 3 FBG-BASED OPTICAL CDMA SPECTRAL CODING 15 3.1 INTRODUCTION 15 3.2 WALSH HADAMARD CODES 16 3.3 SYSTEM CONFIGURATION 18 CHAPTER 4 PERFORMANCE ANALYSIS 26 4.1 INTERFERENCE LIMIT OF SAC OCDMA 26 4.2 NUMERICAL AND SIMULATION RESULTS 32 CHAPTER 5 REALIZATION OF CIRCULATOR-FREE FIBER-GRATING OPTICAL OCDMA NETWORK CODECS 35 5.1 INTRODUCTION 35 5.2 THE PROPOSED OCDMA ARCHITECTURE 36 5.2 EXPERIMENT SETUP 38 5.3 EXPERIMENTAL RESULTS 44 5.4 DISCUSSION 54 CHAPTER 6 CONCLUSION 56 REFERENCE 58 APPENDIX A PHASE-INDUCED INTENSITY NOISE 62

    [01]. R. Dixon, “Why spread spectrum?,” IEEE Communications Soc. Mag., vol. 13, pp. 21-25, July 1975.

    [02]. R. Scholtz, “The spread spectrum concept,” IEEE Transactions on Communications, vol. 25, no. 8, pp. 748-755, August 1977.

    [03]. Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technology, vol. 19, pp. 1274 – 1281, Sept. 2001.

    [04]. D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber
     filters,” Applied Optics, vol. 20, pp. 440-445, 1981.

    [05]. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters, vol. 14, pp. 823-825, 1989.

    [06]. J. F. Huang and D. Z. Hsu, “Fiber-Grating-Based Optical CDMA Spectral Coding with Nearly Orthogonal M-sequence Codes,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sept. 2000.

    [07]. J. F. Huang and C. C. Yang, “Reductions of Multiple-Access Interference in Fiber- Grating-Based Optical CDMA Network,” IEEE Trans. Commun., vol. 50, no. 10, pp. 1680-1687, Oct. 2002.

    [08]. E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance Enhancement of Spectral-Amplitude-Coding Optical CDMA Using Pluse-Position Modulation,” IEEE Trans. Commun., vol. 46, no. 9, pp.1176-1185, Sept. 1998.

    [09]. A.A. Shaar, C.F. Woodcok, and P.A. Davies, “Bounds On the Cross-Correlation Functions of State m-Sequences,” IEEE Trans. Commun., vol. com-35, no. 3, pp. 305-312, March 1987.

    [10]. X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral-amplitude-coding optical CDMA systems,” in IEEE 6th Int. Symp. Spread Spectrum Techniques Applications, vol. 1, 2000, pp. 174 -178.

    [11]. S.V. Maric, Z.I. Kostic, and E.L. Titlebaum, “A New Family of Optical Code Sequences for Use in Spread-Spectrum Fiber-Optic Local Area Networks,” IEEE Trans. Commun, vol. 41, no. 8, pp. 1217-1221, Aug. 1993.

    [12]. L. Tancevski, I. Andonovic, M. Tur, and J. Budin, “Hybrid Wavelength Hopping/Time Spreading Code Division Multiple Access Systems,” IEE Proc., Optoelectronics, vol. 143 , no. 3, pp. 161 -166,  June 1996.

    [13]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.

    [14]. R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Coherence Coding for Photonic Code-Division Multiple Access Networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1928-1837, Sept. 1995.

    [15]. A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, “Spectral phase encoding and decoding using fiber Bragg gratings,” OFC/IOOC, Technical Digest PD33/1-PD33/3, pp. 21-26, Feb. 1999.

    [16]. T. Pfeiffer, B. Deppisch, M. Kaiser, and R. Heidemann, “High speed optical network for asynchronous multiuser access applying periodic spectral coding of broadband sources,” Electron. Lett., vol. 33, pp. 2141-2142, 1997.

    [17]. J. F. Huang, D. Z. Hsu, and Y. F. Wang, “Photonic CDMA networking with spectrally pseudo-orthogonal coded fiber Bragg gratings,” IEICE Trans. Commun., vol. E83-B, pp. 2331-2340, 2000.

    [18]. D. B. Hunter and R. A. Minasian, “Programmable high-speed optical code recognition using fiber Bragg gratings arrays,” Electron. Lett., vol. 35, pp. 412-414, 1999.

    [19]. K. Yu and N. Park, “Design of new family of two-dimensional wavelength-time spreading codes for optical code-division multiple-access networks,” Electron. Lett., vol. 35, pp. 830-831, 1999.
    [20]. N. Wada, H. Sotobatashi, and K. Kitayama, “2.5 Gbits/s time-spread/wavelength-hop optical code-division multiplexing using fiber Bragg grating with supercontinum light source,” Electron. Lett., vol. 36, pp. 815-817, 2000.

    [21]. P. C. The, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructure fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, pp. 154-156, Feb. 2001.

    [22]. M. Kavehrad, and D. Zaccarin, “Optical Code-Division-Multiplexed Systems    
      Based on Spectral Encoding of Noncoherent Sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, March 1995.

    [23]. P.F. Wysocki, M.J.F. Digonnet, and B.Y. Kim, “Spectral Characteristics of High-Power 1.5   Broad-Band Superluminscent Fiber Sources,” IEEE Photon. Technol. Lett., vol. 2, no. 3, pp. 178-180, March 1990.

    [24]. R.A. Griffin, D.S. Sampson, and D.A. Jackson, “Coherence coding for photonic code-division multiple access networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1826-1837, Sept. 1995.

    [25]. L. Nguyen, B. Aazhang, and J.F. Young, “All-Optical CDMA with Bipolar codes,”    
        Electron. Lett., vol. 31, no. 3, pp. 469-467, March 1995.

    [26]. E.D.J. Smith, P.T. Gough, and D.P. Taylor, “Noise Limits of Optical Spectral- Encoding CDMA Systems,” Electron. Lett., vol. 31, no. 17, pp. 1469–1470,  Aug. 1995.

    [27]. D. Zaccarin and M. Kavehrad, “An Optical CDMA System Based on Spectral Encoding of LED,” IEEE Photon. Technol. Lett., vol. 5, no. 4, pp. 497-482, 1993.

    [28]. Z. Wei, H. Ghafouri-Shiraz, and H.M.H. Shalaby, “Performance Analysis of Optical Spectral-Amplitude-Coding CDMA Systems Using a Super-Fluorescent Fiber Source,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 887-889, Aug. 2001.

    [29]. Chao-Chin Yang and Jen-Fa Huang, “Two-dimensional M-matrices coding in    Spatial/Frequency Optical CDMA Networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168-170, Jan. 2003.

    [30]. S. Ayotte, M. Rochette, J. Magne, L.A. Rusch, and S LaRochelle, “Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG,” IEEE J. Lightwave Technol., vol. 23, no. 2, pp. 724-731, Feb. 2005.

    下載圖示
    2011-07-14公開
    QR CODE