簡易檢索 / 詳目顯示

研究生: 周塏晉
Chou, Kai-Ching
論文名稱: 1KW風力發電葉片與塔架設計及監控系統研究
Development of blade & tower structure and monitoring system for the 1KW wind turbine
指導教授: 鄭泗滄
Jeng, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 192
中文關鍵詞: 混合定律(Rules of Mixture)結構健康監控集電環(Slip ring)應變規(Strain gauge)手積法VARTM動平衡
外文關鍵詞: Health Monitory, Multistage Tower, Composite Material, Hand Lay-up, VARTM, Dynamic Balancing
相關次數: 點閱:98下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的為1KW風力發電機結構上的設計、模擬、製造等一系列的流程開發。對於塔架設計而言,本文會根據所需負載的重量、塔架的高度及所需承受的最大受力等參數為依據,基於懸臂樑彎矩(bending)理論運算,計算出塔架所需要的直徑、厚度等參數。此外,更運用多段塔架設計概念,來算出在不同高度下,受18m/s風下的負載,所需要的圓管直徑,以確保塔架的強度,也可以達到塔架輕量化與節省成本的目標。
    對於葉片設計而言,一般都是使用ABS或木頭這類的材質來製作葉片,可能會有強度不足或斷裂的情形,在此次的研究上,本文會根據複合材料力學中的混合定律(Rules of Mixture),計算出疊層的等效參數,並輸入至商用有限元素軟體模擬LS-DYNA,透過應力值的呈現,作為包覆在葉片上的複合材料強化疊層與纖維角度的設計依據。
    在驗證方面,會將BEM(Blade Element Method)理論所算出來的受力值與參考資料做比對,來增加計算出來的受力值的可信度。在材料試驗中所得到的材料參數,輸入模擬之中進行比對來驗證此材料性質是可用的,並以量測應變值的方法利用葉片的準靜態彎矩實驗來驗證幾何外型的可信度,最後再驗證所設計的圓管直徑在模擬下應力值是否也與所計算出來的值相同。
    在監控系統上,我們會在葉片應變明顯的部位上裝上應變規(Strain gauge),並搭配集電環(Slip ring)與無線訊號發射裝置,在環境風洞中,監測旋轉的狀態下,其葉片的應變值在不同風速與轉速下的關係。
    對於實體製作程序而言,本文中會介紹本次使用複合材料強化葉片的手積法(hand lay-up)與VARTM(Vacuum Assisted Resin Transfer Molding)法。由於手積法會產生些微的重量與質心位置的偏差,因此我們會使用自製的質心平衡與葉片平衡設備,並使用配重塊加以調整,使得葉片可以達到靜態平衡(static balancing)與動態平衡(dynamic balancing),相關內容將在文章中有完整的介紹。

    The purpose of this study is to research and develop the complete process of design, analysis and manufacture for 1K wind turbine. For the tower structure, the diameter and corresponding thickness of the tower will be computed and determined by the critical wind and gravity loadings from the beam theory in order to achieve the goals with light-weight and cost-down on multistage concept. As for 1KW blades, the rules of mixture were used to estimate the equivalent coefficients in this study. The commercial FEM code – LS-DYNA was utilized to analyze the stress distribution of the blade model. According the numerical results, we can understand what kind of lamina with its effective fiber angles we needed.
    For the verification, there are three crucial cases will be verified in this study. At first, the Blade Element Method (BEM) theory and fluent’s results can be clearly compared and justified in order to elevate the adequacy and accuracy of the loadings form BEM. Second, the material of ABS and composite with glass fiber are acquired from the SHMAZDU AG-X test machine. The bending test for the blade will be performed a good agreement by examining the strain of the experimental and simulated results. Finally, the principal equivalent stress will be compared in correct by the bending theory with circular hollow beam and LS-DYNA code for the tower structure.
    As for the Health monitoring system, the strain gauges will be utilized to measure the strain of the blade on the location of maximum Vonmise’s stress happened. In addition, the slip ring and the wireless signal transmitter devices are used to capture data in the wind tunnel with various wind speeds under specific rotation speeds. Due to measured strain, we can determine and construct the full monitory system to prevent structure failure and announce the warring message to the supervisor. For the manufacture procedures of blade, the composite reinforced blade/specimen was utilized by hand lay-up or VARTM methods, respectively.
    Due to the weight deviation from the hand lay-up method, the home-made mass balancing and blade balancing equipments are used to calibrate and look for where should be increased or decreased the mass. Via the mass calibration of blade, we can ensure and confirm that the composite reinforced blades will be achieved the situations of static and dynamic balancing.

    目次 中文摘要 英文摘要 誌謝 圖目次 VI 表目次 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 3 1-3 研究目的 4 1-4 風力發電機結構和專業用語簡介 5 1-5 複合材料纖維簡介 6 1-5-1 玻璃纖維 7 1-5-2 碳纖維 8 1-6 文獻回顧 10 1-7 研究方法與論文大綱 10 第二章 理論背景與分析方法 24 2-1 前言 24 2-2 空力動力學性能的特性係數介紹 25 2-3 葉片元素法(Blade Element Method)[26] 31 2-4複合材料力學理論介紹 37 2-5單層等效混合定律 (Rule of Mixtures) 40 2-6 古典積層板理論 41 2-7 複材懸臂梁理論 41 2-8 懸臂梁彎矩理論 41 2-9 Implicit 與 Explicit介紹 46 2-10 Explicit數值方法之理論介紹 41 第三章 風力發電機之有限元素模型 65 3-1 風力發電機結構之簡介 65 3-2 葉片結構之有限元素模型 66 3-2-1 葉片之有限元素模型建立方法與元素選定 66 3-2-2 複材層有限元素模型建立方法與元素選定 67 3-2-3 葉片外型改良之有限元素模型 67 3-3 塔架結構之有限元素模型 68 3-3-1上下鋼管之有限元素模型建立與元素選定 69 3-3-2 兩管相接觸的部位建立方法與元素選定 69 3-3-3 底部的強化三角版部位建立方法與元素選定 70 3-4 發電機機身之有限元素模型 70 3-5 風力發電機結構之各部件材料特性 70 3-6 元素探討與有限元素模型之收斂性測試 71 第四章 實驗與模擬驗證 85 4-1 材料實驗 85 4-1-1實驗目的 85 4-1-2 規範介紹 86 4-1-3實驗配置 87 4-1-4 拉伸試驗結果 88 4-2 葉片擬靜態彎矩實驗與設備介紹 89 4-2-1 實驗目的 89 4-2-2 實驗設備及流程 89 4-2-3 實驗結果 91 4-3 葉片風洞實驗 92 4-3-1 實驗目的 92 4-3-2實驗設備及流程 93 4-3-3實驗結果 95 第五章 數值模擬分析與驗證 114 5-1 前言 114 5-2材料試片數值模擬驗證 116 5-2-1試片有限元素模型建立 116 5-2-2 ABS數值模擬驗證 117 5-2-3玻璃纖維數值模擬驗證 117 5-3葉片準靜態數值模擬驗證 118 5-4葉片複材疊層設計 119 5-4-1最大受力參數計算 119 5-4-2不同疊層與角度設計 123 5-4-3數值模擬分析 124 5-5塔架數值模擬驗證 128 5-5-1塔架 LABVIEW程式設計 128 5-5-2數值模擬驗證 130 5-5-3真實模型數值模擬 131 第六章 實物製作 159 6-1 葉片複材層製作 159 6-1-1 手機真空袋法 160 6-1-2 改良 161 6-1-3 質點搜尋與動態平衡 161 6-2 複合材料試片製作 162 6-2-1 SCRIMP介紹 163 6-2-2 試片製作 164 6-3 塔架建造 165 第七章 結論與未來展望 185 7-1 結論 185 7-2 未來展望 188 參考文獻 190

    1.http://www.moeaboe.gov.tw/ 經濟部能源局。
    2.http://www.nsc.gov.tw/ 工業技術研究院。
    3.挪威船級社,力發電機組設計導則,機械工業出版社。
    4.http://www.wwindea.org Word Wind Energy Association (WWEA).
    5.Rachid Younsi, Ismail El-Batanony, Jeur-Bernard Tritsch, Hassan Naji, Bernard Landjerit,” Dynamic study of a wind turbine blade with horizontal axis”, Eur. J. Mech. A/Solids 20 241–252, 2001.
    6.陳興加,”複合材料應用於風車葉片之研究”,航空太空工程研究所,2006,國立成功大學。
    7.Hani M. Negma, Karam Y. Maalawib, ”Structural design optimization of wind turbine towers” Computers and Structures 74, 649±666, 2000.
    8.A. Huskey and D. Prascher,” Tower Design Load Verification on a 1-kW Wind Turbine”, 43rd AIAA Aerospace Sciences Meeting and Exhibit,2005.
    9.ASTM-D638 ,Standard Test Method for Tensile Properties of Plastics, ASTM.
    10.CNS-Method of Test for Tensile Properties of Glass Fiber Reinforced Plastics, CNS.
    11.Jenq, S. T. and J. J. Mo, “Ballistic impact response for two-step braided three-dimensional texile composites, ” AIAA Journal, Vol.34, No.2, pp.375-384, 1996.
    12.Jenq, S. T., J. T. Kuo and L.T. Sheu, “Ballistic impact response of 3-D four-step braided glass/epoxy composite” ,Key Engineering Materials Vol. 141-143, in part 1: Impact Response and Dynamic Failure of Composite and Laminate Material, pp.349-366, 1998
    13.Betz, a.”Windenergie und Ihre Ausnutzung durch Windmullen” Vandenhoeck and Ruprecht, Gottingen,1926
    14.Glauert, H. “Airplane propellers. Aerodynamic Thoery”,Div. L. Chapter XI, Springer Verlag, 1935
    15.Glauert, H.”The Element of Aero Foil and Airscrew Theory” Cambridge University Press,1948
    16.T. J. Chung, Continuum Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1988. (pp.104-106)
    17.Herbert Reismann, Peter S. Pawlik, Elasticity Theory and Applications, John Wiley, New York, 1980. (pp.128-135)
    18.Ronald F. Gibson, Principles of Composite Material Mechanics, Second Edition, Taylor & Francis Group , LLC , Boca Raton, 2007. (pp.91-107)
    19.勢流科技股份有限公司, 結構分析軟體LS-DYNA技術講座Implicit/Explicit, 2006. (pp.38-40)
    20.Jagmohan L. Humar, Dynamics of structures, Second Edition, Lisse ;A.A. Balkema Publishers,c2002.Exton, PA(pp.408-412)
    21.Germund Dahlquist et al., Numerical Method, Prentice Hall, Englewood Cliffs, New Jersey, 1974. (pp.222-223)
    22.R. C. Hibbeler ”Mechanics of Materials” Sixth Edition, Prentice Hall, 2007.
    23.高義明,”內政部建研所環境風洞校驗及二維鈍型體空氣動力流場實驗研究”,航空太空工程研究所,2005,國立成功大學。
    24.www.ni.com.tw,”為應用選擇正確的應變規”, NATIONAL INSTRUMENTS。
    25.Chi-Jeng Bai and Fei-Bin Hsiao, ”Code Development for Predicting the Aerodynamic Performance of a HAWT Blade with Variable-Operation and Verification by Numerical Simulation” ,2010 CFD Taiwan.

    下載圖示 校內:2013-09-02公開
    校外:2013-09-02公開
    QR CODE