| 研究生: |
米歐儂 Mee-inta, Onanong |
|---|---|
| 論文名稱: |
腦膜淋巴系統在阿滋海默症發病機制的角色 Role of meningeal lymphatic drainage in Alzheimer's disease pathogenesis |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 阿茲海默症 、澱粉樣變性 、腦膜淋巴系統 、跑步運動 |
| 外文關鍵詞: | Alzheimer's disease, amyloidosis, meningeal lymphatic system, running exercise |
| ResearchGate: | https://www.researchgate.net/profile/Onanong-Mee-Inta |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中樞神經系統(CNS)曾被認為是無淋巴管的器官。根據近期動物研究的結果,證實中樞神經系統中淋巴系統的存在。中樞神經系統中有兩條主要的淋巴途徑:神經膠細胞類淋巴途徑和腦膜淋巴 (mLym)系統。腦膜淋巴系統可以將大分子、液體和廢物從大腦運送到頸部淋巴結 (CLNs)。研究表明,該系統的結構和功能在老化過程中逐漸惡化。由於老化是阿茲海默症 (AD) 的主要危險因素,因此值得詳細探討這個該系統與阿茲海默症發病機制之間的關係。細胞外澱粉樣蛋白-β (Aβ) 胜肽累積和聚集導致澱粉樣斑塊沉積被認為是阿茲海默症發病機制的標誌。運動被認為是一種增強學習和記憶功能並延緩阿茲海默症發病機制的有效策略。然而,運動是否會影響腦膜淋巴系統的結構和功能尚不清楚。首先,我們開發了一種新技術,透過以奈米粒子作為顯影劑的高頻超音波成像來即時監測腦膜淋巴系統的功能。該技術透過淋巴管結紮和使用 visudyne 和光轉換進行腦膜淋巴管消融得到了驗證。與3個月大的阿茲海默症基因轉殖小鼠 (5xFAD)小鼠相比,6 個月大的5xFAD小鼠,即澱粉樣蛋白斑塊沉積期,顯示出腦膜淋巴系統功能下降,包括腦脊髓液從側腦室到深頸部淋巴結的流量和速度。這些變化在 6 個月大的野生型小鼠中未見。 腦膜淋巴系統淋巴管的直徑和麵積,以及腦膜(LYVE-1 和 VEGFR3)和大腦(VEGF-C)中淋巴管相關基因的表達均減少。此外,6 個月大的 5xFAD 小鼠的學習和記憶能力表現受損。將傳入深頸部淋巴結的淋巴管結紮加速了腦部的澱粉樣變性。從3個月大開始進行3個月的跑步鍛煉,增加了背側和基底區域腦膜淋巴系統中淋巴管的大小和功能,以及LYVE-1、VEGFR3和VEGF-C基因的表達。這些小鼠的澱粉樣變性數量減少,學習和記憶能力也得到改善。體外研究表明,Aβ 寡聚物降低了人類真皮淋巴內皮細胞中的 VEGFR3 基因表達,而運動小鼠的血清和細胞外囊泡則抑制了 A 寡聚物誘導的 VEGFR3 下調。總之,跑步運動可以透過增強 腦膜淋巴系統的功能,成為另一種延緩澱粉樣變性的非藥物治療策略。
The central nervous system (CNS) was thought to be the lymphatic vessel-free organ. Recently, based on the results from animal studies, the lymphatic system in the CNS has been demonstrated. There are two main CNS lymphatic pathways: glymphatic route and meningeal lymphatic (mLym) vasculature. The mLym system can transport macromolecules, fluid, and waste products out from the brain to the cervical lymph nodes (CLNs). It has been shown that the structure and function of this system gradually deteriorated during aging. Because aging is the major risk factor for Alzheimer's disease (AD), the relationship between this system and AD pathogenesis deserves explored in detail. Extracellular accumulation and aggregation of amyloid-β (Aβ) peptides leading to deposition of amyloid plaques has been considered as the hallmark of AD pathogenesis. Exercise has been implicated as a useful strategy to enhance learning and memory function and delay AD pathogenesis. However, whether exercise can affect the structure and function of the meningeal lymphatic system is unclear. Initially, we developed a new technique to real-time monitor the function of the mLym system via the high-frequency ultrasound imaging with nanoparticles as the contrast agent. This technique was validated by lymphatic vessel ligation and mLym vessel ablation with visudyne and photoconversion. Transgenic mice of AD (5xFAD) at 6 months of ages, a period of the amyloid plaque deposition, showed a reduction of mLym function, including the flow volume and speed of the cerebrospinal fluid from the lateral ventricles to the deep CLNs, compared to 3-month-old 5xFAD mice. These changes were not observed in 6-month-old wild-type mice. The diameter and the area of mLym vessels, as well as the expression of lymphatic vessel-related genes in the meninges (LYVE-1 and VEGFR3) and in the brain (VEGF-C) were reduced. Moreover, learning and memory performances were impaired in 6-month-old 5xFAD. Amyloidosis in the brain was accelerated by ligation of the afferent lymphatic vessels to the deep CLNs. Three months of running exercise starting from 3 months old increased the size and function of mLym vessels in both dorsal and basal areas, as well as the expression of LYVE-1, VEGFR3, and VEGF-C genes. The amounts of amyloidosis were reduced, and the learning and memory abilities were improved in these mice. In vitro study showed that Aβ oligomers decreased the VEGFR3 gene expression in human dermal lymphatic endothelial cells, whereas serum and extracellular vesicles from exercised mice inhibited the Aβ oligomer-induced downregulation of VEGFR3. In conclusion, running exercise can be an alternative non-pharmaceutical therapeutic strategy for delaying amyloidosis by enhancing the function of mLym system.
1. Secker, G.A. and N.L. Harvey, VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn, 2015. 244(3): p. 323-31.
2. Xu, J.Q., et al., The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res, 2023. 18(6): p. 1249-1256.
3. Iliff, J.J. and M. Nedergaard, Is there a cerebral lymphatic system? Stroke, 2013. 44(6 Suppl 1): p. S93-5.
4. Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci, 2011. 12(12): p. 723-38.
5. Rhea, E.M. and W.A. Banks, Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Front Neurosci, 2019. 13: p. 521.
6. Iliff, J.J., et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med, 2012. 4(147): p. 147ra111.
7. Jessen, N.A., et al., The Glymphatic System: A Beginner's Guide. Neurochem Res, 2015. 40(12): p. 2583-99.
8. Mestre, H., Y. Mori, and M. Nedergaard, The Brain's Glymphatic System: Current Controversies. Trends Neurosci, 2020. 43(7): p. 458-466.
9. Xie, L., et al., Sleep drives metabolite clearance from the adult brain. Science, 2013. 342(6156): p. 373-7.
10. Goldmann, J., et al., T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol, 2006. 80(4): p. 797-801.
11. Bradbury, M.W. and D.F. Cole, The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol, 1980. 299: p. 353-65.
12. Louveau, A., et al., Structural and functional features of central nervous system lymphatic vessels. Nature, 2015. 523(7560): p. 337-41.
13. Aspelund, A., et al., A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med, 2015. 212(7): p. 991-9.
14. Ahn, J.H., et al., Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019. 572(7767): p. 62-66.
15. Antila, S., et al., Development and plasticity of meningeal lymphatic vessels. J Exp Med, 2017. 214(12): p. 3645-3667.
16. Elham, E., et al., Anatomic evidence shows that lymphatic drainage exists in the pituitary to loop the cerebral lymphatic circulation. Med Hypotheses, 2020. 143: p. 109898.
17. Ma, Q., et al., Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun, 2017. 8(1): p. 1434.
18. Yoon, J.H., et al., Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature, 2024. 625(7996): p. 768-777.
19. Margaris, K.N. and R.A. Black, Modelling the lymphatic system: challenges and opportunities. J R Soc Interface, 2012. 9(69): p. 601-12.
20. Baluk, P., et al., Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med, 2007. 204(10): p. 2349-62.
21. Perl, D.P., Neuropathology of Alzheimer's disease. Mt Sinai J Med, 2010. 77(1): p. 32-42.
22. Louveau, A., et al., Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest, 2017. 127(9): p. 3210-3219.
23. Tarasoff-Conway, J.M., et al., Clearance systems in the brain--implications for Alzheimer diseaser. Nat Rev Neurol, 2016. 12(4): p. 248.
24. Peng, W., et al., Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis, 2016. 93: p. 215-25.
25. Da Mesquita, S., et al., Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature, 2018. 560(7717): p. 185-191.
26. Valenza, M., et al., Altered Waste Disposal System in Aging and Alzheimer's Disease: Focus on Astrocytic Aquaporin-4. Front Pharmacol, 2019. 10: p. 1656.
27. Smith, A.J., T. Duan, and A.S. Verkman, Aquaporin-4 reduces neuropathology in a mouse model of Alzheimer's disease by remodeling peri-plaque astrocyte structure. Acta Neuropathol Commun, 2019. 7(1): p. 74.
28. Kress, B.T., et al., Impairment of paravascular clearance pathways in the aging brain. Ann Neurol, 2014. 76(6): p. 845-61.
29. Zhou, Y., et al., Impairment of the Glymphatic Pathway and Putative Meningeal Lymphatic Vessels in the Aging Human. Ann Neurol, 2020. 87(3): p. 357-369.
30. Reeves, B.C., et al., Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus. Trends Mol Med, 2020. 26(3): p. 285-295.
31. Simka, M., P. Latacz, and J. Czaja, Possible Role of Glymphatic System of the Brain in the Pathogenesis of High-Altitude Cerebral Edema. High Alt Med Biol, 2018. 19(4): p. 394-397.
32. Zhang, Q., et al., Neutrophil extracellular trap-mediated impairment of meningeal lymphatic drainage exacerbates secondary hydrocephalus after intraventricular hemorrhage. Theranostics, 2024. 14(5): p. 1909-1938.
33. Jacobsen, H.H., et al., In Vivo Evidence for Impaired Glymphatic Function in the Visual Pathway of Patients With Normal Pressure Hydrocephalus. Invest Ophthalmol Vis Sci, 2020. 61(13): p. 24.
34. das Neves, S.P., N. Delivanoglou, and S. Da Mesquita, CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol, 2021. 12: p. 655052.
35. Bolte, A.C., et al., Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun, 2020. 11(1): p. 4524.
36. Jeltsch, M., et al., Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res, 2003. 314(1): p. 69-84.
37. Tammela, T. and K. Alitalo, Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010. 140(4): p. 460-76.
38. Yanev, P., et al., Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab, 2020. 40(2): p. 263-275.
39. Wen, Y.R., et al., Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res, 2018. 13(4): p. 709-716.
40. Cho, S.J., et al., VEGFR2 alteration in Alzheimer's disease. Sci Rep, 2017. 7(1): p. 17713.
41. Stine, W.B., et al., Preparing synthetic Abeta in different aggregation states. Methods Mol Biol, 2011. 670: p. 13-32.
42. Barranco, I., et al., Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Scientific Reports, 2019. 9.
43. Formolo, D.A., et al., Leveraging the glymphatic and meningeal lymphatic systems as therapeutic strategies in Alzheimer's disease: an updated overview of nonpharmacological therapies. Mol Neurodegener, 2023. 18(1): p. 26.
44. Shin, Y.J., et al., Expression of vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) in the glial reaction elicited by human mesenchymal stem cell engraftment in the normal rat brain. J Histochem Cytochem, 2015. 63(3): p. 170-80.
45. Ji, R.C., Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci, 2012. 69(6): p. 897-914.
46. Chen, J.C., et al., The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. International Journal of Molecular Sciences, 2013. 14(1): p. 88-107.
47. Cline, E.N., et al., The Amyloid-beta Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis, 2018. 64(s1): p. S567-S610.
48. Casciaro, S., et al., Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol, 2010. 45(11): p. 715-24.
49. Chou, S.W., et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc, 2010. 132(38): p. 13270-8.
50. Blomley, M.J., et al., Microbubble contrast agents: a new era in ultrasound. BMJ, 2001. 322(7296): p. 1222-5.
51. Appis, A.W., M.J. Tracy, and S.B. Feinstein, Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res Pract, 2015. 2(2): p. R55-62.
52. Ignee, A., et al., Ultrasound contrast agents. Endosc Ultrasound, 2016. 5(6): p. 355-362.
53. Paefgen, V., D. Doleschel, and F. Kiessling, Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol, 2015. 6: p. 197.
54. Hershenhouse, K.S., et al., Meningeal Lymphatics: A Review and Future Directions From a Clinical Perspective. Neurosci Insights, 2019. 14: p. 1179069519889027.
55. Jaffe, R.J., R.S. Dave, and S.N. Byrareddy, Meningeal lymphatics in aging and Alzheimer's disease. Ann Transl Med, 2019. 7(Suppl 1): p. S2.
56. Tsai, S.F., et al., Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory. Gerontology, 2018. 64(6): p. 551-561.
57. Zhang, X., et al., Treadmill Exercise Decreases Abeta Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci, 2019. 11: p. 78.
58. He, X.F., et al., Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice. Front Mol Neurosci, 2017. 10: p. 144.
59. Liu, Y., et al., Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res, 2022. 17(9): p. 2079-2088.
60. de Oliveira Silva, F., et al., Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with Alzheimer's disease: A randomized controlled trial. Maturitas, 2019. 126: p. 28-33.
61. MacKeigan, T.P., M.L. Morgan, and P.K. Stys, Quantitation of Tissue Amyloid via Fluorescence Spectroscopy Using Controlled Concentrations of Thioflavin-S. Molecules, 2023. 28(11).
62. Gu, L. and Z. Guo, Alzheimer's Abeta42 and Abeta40 peptides form interlaced amyloid fibrils. J Neurochem, 2013. 126(3): p. 305-11.
63. Bitan, G., et al., Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A, 2003. 100(1): p. 330-5.
64. Weggen, S., et al., A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 2001. 414(6860): p. 212-6.
65. Safdar, A., A. Saleem, and M.A. Tarnopolsky, The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol, 2016. 12(9): p. 504-17.
66. Zhou, C., et al., Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ, 2021. 28(2): p. 715-729.
67. Oliveira, G.P., Jr., et al., Effects of Acute Aerobic Exercise on Rats Serum Extracellular Vesicles Diameter, Concentration and Small RNAs Content. Front Physiol, 2018. 9: p. 532.
68. Bei, Y., et al., Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J Sport Health Sci, 2022. 11(4): p. 466-478.
69. Kivela, R., et al., Effects of acute exercise, exercise training, and diabetes on the expression of lymphangiogenic growth factors and lymphatic vessels in skeletal muscle. Am J Physiol Heart Circ Physiol, 2007. 293(4): p. H2573-9.