簡易檢索 / 詳目顯示

研究生: 陳浩瑩
Chen, Hao-Ying
論文名稱: 離心泵葉形曲線於流場特性及結構強度影響之探討
An Investigation of the Influences of the Blade Curves on the Hydrodynamic Performance and Structure of Centrifugal Pump
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 198
中文關鍵詞: 創成加工法離心泵葉輪有理式B仿線
外文關鍵詞: Rational B-spline, Generative machining method, Centrifugal pump impeller
相關次數: 點閱:139下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   離心泵葉片為三維扭轉曲面,欲達到理想之葉片設計,除泵浦性能表現的考量外,亦需考慮葉片外形對泵浦結構強度、運轉穩定性之影響,以及葉輪是否方便製造或加工等問題。本文有鑑於此,將五軸創成加工法與數值曲線Rational B-Spline結合,建構離心泵之葉片外廓。因經由數值曲線所合成之離心泵葉片具有高度平滑性之緣故,不必透過耗時之最佳化步驟即可得到具優越流場特性之葉片外形,設計時間得以大幅縮減,且設計出之葉輪具有可快速進行五軸加工之特性。
      除透過CFD軟體TASCflow計算離心泵之效能以評估設計之可行性外,為探討流體施加於葉片之負載對葉片結構造成之影響及葉片運轉時是否有共振現象的發生,本研究亦利用CATIA建立離心泵葉片之有限元素模型,對離心泵葉片進行結構分析及振模分析。於五軸加工方面,本研究以微分幾何對加工時過切、干涉等現象進行研判,並由刀具及加工機各軸於加工時所需運動量之計算結果作為比較不同葉形、加工法及加工機之五軸加工效能的依據。
      由本研究之分析結果可發現以有理式B仿線合成葉形,再將葉片前緣頂端葉片角度小於流體入射角之部分切除,產生之離心泵葉輪於流場、結構及加工方面皆有理想之表現。而本文之分析結果證明以五軸加工法結合數值曲線之葉片設計法具有優越性與可行性。

      A centrifugal pump impeller design covers many fields, including fluid dynamics, structural mechanics, vibration and manufacturing etc. In order to obtain blade shapes that could lead to good hydrodynamic performance and machined practicably, an impeller design approach combining five-axis manufacturing process and numerical curve is proposed in this research. The blade shapes are generated from the tool paths constructed ruled surface by the concept of generative machining method, and the cubic spline and the rational B-spline are used to compose the blade curve. For the numerical simulation, the commercial CFD software (CFX-TASCflow) is used to solve the three-dimensional Reynolds-averaged Navier-Stokes equations in a rotating cylindrical coordinate system.
      In order to evaluate structure reliability and check if vibrations take place, the CAE modules of CATIA are introduced to blade structure analysis and modal analysis in this research. In the aspect of five-axis machining, the NC code for professional-type machine and general-type machine are derived by the transformation of coordinates. Besides, differential geometry is used to check if the interference and undercutting taken place during machining. Finally, kinematic performance of five-axis machining is compared between different blade curves and different five-axis machine.
      The kinematic analysis results of five-axis machining show impellers whose blade curves composed by the rational B-spline is the prefer choice in the machining concerns. Besides, after the difference between incident angle and blade angle at blade tip is decreased by cutting blade leading edge, both flow field simulation and blade structure analysis results also show impellers whose blade curves composed by the rational B-spline are quite workable.

    目錄 中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 誌謝………………………………………………………………………………III 目錄………………………………………………………………………………V 表目錄……………………………………………………………………………IX 圖目錄……………………………………………………………………………XI 符號說明…………………………………………………………………………XX 第一章 緒論……………………………………………………………………1 1-1 研究動機與目的………………………………………………………1 1-1.1 以離心泵為主題的理由…………………………………………1 1-1.2 產業現況概述……………………………………………………3 1-1.3 目前國內業界遭遇之困難………………………………………3 1-1.4 研究目的…………………………………………………………5 1-2 文獻回顧………………………………………………………………6 1-2.1 渦輪機械葉片設計………………………………………………6 1-2.2 數值曲線應用於幾何設計………………………………………7 1-2.3 在數值方法與流場計算上………………………………………8 1-2.4 結構及振動分析…………………………………………………10 1-2.5 葉片加工…………………………………………………………11 1-3 研究流程………………………………………………………………12 1-4 本文架構………………………………………………………………13 第二章 離心泵葉片設計及五軸加工…………………………………………15 2-1 參數定義………………………………………………………………15 2-1.1 幾何參數…………………………………………………………15 2-1.2 流場參數…………………………………………………………15 2-1.3 加工參數…………………………………………………………16 2-2 葉輪幾何決定…………………………………………………………16 2-2.1 葉片入出口角方程式推導………………………………………17 2-2.2 設計條件與幾何參數及流場參數關係式之建立………………20 2-3 葉片均線建立…………………………………………………………23 2-4 葉形曲線合成…………………………………………………………24 2-4.1 葉片入出口角與曲線邊界條件轉換……………………………24 2-4.2 三次仿線…………………………………………………………25 2-4.3 有理式B仿線……………………………………………………26 2-5 刀具路徑與葉片外廓產生……………………………………………30 2-6 加工機加工路徑建立…………………………………………………32 2-6.1 專用型加工機……………………………………………………32 2-6.2 泛用型加工機……………………………………………………33 第三章 加工路徑規劃…………………………………………………………37 3-1 干涉研判………………………………………………………………37 3-2 過切研判………………………………………………………………38 3-2.1 法曲率及主曲率…………………………………………………38 3-2.2 過切研判方法……………………………………………………40 3-3 加工運動量求取………………………………………………………40 3-3.1 刀具進給速度及加速度…………………………………………40 3-3.2 加工機各軸補償速度及加速度…………………………………41 3-4 第四軸單位進給量決定………………………………………………42 第四章 流場數值模擬…………………………………………………………44 4-1 基本假設………………………………………………………………44 4-2 統御方程式……………………………………………………………44 4-3 紊流模式………………………………………………………………47 4-3.1 紊流模式…………………………………………………………47 4-3.2 壁面函數…………………………………………………………48 4-4 數值方法………………………………………………………………49 4-4.1 平均雷諾Navier Stokes方程式離散……………………………49 4-4.2 通量元素…………………………………………………………50 4-4.3 上風差分法………………………………………………………51 4-4.4 數值網格建立……………………………………………………53 4-4.5 邊界條件設定……………………………………………………53 第五章 結構分析及振模分析…………………………………………………55 5-1 有限元素法簡介………………………………………………………55 5-2 元素種類………………………………………………………………57 5-3 材料破壞理論…………………………………………………………58 5-3.1 最大主應力破壞理論……………………………………………59 5-3.2 畸應變能破壞理論………………………………………………60 5-4 結構分析模型建立……………………………………………………60 5-4.1 單一葉片有限元素模型建立……………………………………61 5-4.2 葉片厚度及邊界條件設定………………………………………62 5-4.3 葉片負載設定……………………………………………………62 5-5 振模分析模型建立……………………………………………………65 第六章 結果與討論……………………………………………………………67 6-1 不同葉形之葉輪幾何比較……………………………………………67 6-2 五軸加工規劃結果……………………………………………………68 6-2.1 干涉研判結果……………………………………………………68 6-2.2 過切研判結果……………………………………………………69 6-2.3 加工運動分析結果………………………………………………69 6-2.4 第四軸進給量決定………………………………………………72 6-3 流場分析結果…………………………………………………………72 6-3.1 流道半翼展流場分析……………………………………………74 6-3.2 流道中央子午面流場分析………………………………………75 6-3.3 葉片兩側壓力變化現象探討……………………………………76 6-4 有理式B仿線葉形之修正……………………………………………77 6-5 結構分析結果…………………………………………………………79 6-6 振模分析結果…………………………………………………………82 第七章 結論與未來展望………………………………………………………85 7-1 結論……………………………………………………………………85 7-2 未來展望………………………………………………………………87 參考文獻…………………………………………………………………………89

    [1] Church, G., “Centrifugal Pump and Blowers,” Wiley, New York, 1944.
    [2] Stepanoff, A.J., “Centrifugal and Axial Flow Pumps,” Wiley, New York, 1957.
    [3] Pfleiderer, “Die Kreiselpumpen,” Springer-Verlag, Berlin, 1961.
    [4] Tuzson, J., “Centrifugal Pump Design,” Wiley, New York, 2000.
    [5] Oh, H. W., and Chung, M. K., “Optimum Values of Design Variables versus Specific Speed for Centrifugal Pumps,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, vol. 213, pp. 219-226, 1999.
    [6] Al-Zubaidy, S. N., “A Proposed Design Package for Centrifugal Impellers,” Computers & Structures, vol. 55, No. 2, pp. 347-356, 1995.
    [7] Zangeneh, M., “TURBOnews Issue no. 1,” Advance Design Technology, 2004.
    [8] Zangeneh, M., “TURBOnews Issue no. 2,” Advance Design Technology, 2005.
    [9] Goto, A., and Zangeneh, M., “Hydrodynamic Design of PumpDiffuser Using Inverse Design Method and CFD,” ASME J. Fluids Engineering, vol. 124, pp. 319-328, 2002.
    [10] Goto, A., Nohmi, M., Sakurai, T., and Sogawa, Y., “Hydrodynamics Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method,” ASME J. Fluids Engineering, vol. 124, pp. 329-335, 2002.
    [11] Pierret, S., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network,” Transactions of the ASME Journal of Turbomachinery, vol. 121, 1998.
    [12] 林博正、杜黎蓉與吳建鋒,“NURBS合成與凸輪機構之影響”,中國機械工程學會, 第十六屆學術研討會, 1999.
    [13] Lepine, J., Guibault, F., and Trepanier, J.Y., “Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings,” AIAA J., vol.39, No. 11, 2001.
    [14] Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed Flow Type,” NACA TN2604, 1952.
    [15] Ni, R. H., “A Multiple Grid Scheme for Solving the Euler Equations,” AIAA Journal, vol. 20 no. 11, 1982.
    [16] Chima, R. V., “Inviscid and Viscous Flows in Cascades with an Explicit Multiple Grid Algorithm,” AIAA Journal, vol. 23, pp.1556-1563, 1985.
    [17] Moore, J. and Moore, J. E., “Performance Evaluation of Linear Turbine Cascade Using Three-Dimensional Viscous Flow Calculations,” ASME Journal of Engineering for Gas Turbine and Power, vol. 17 no. 1, pp. 969-975, 1985.
    [18] Yamamoto, O., and Barton, J. M., “Improved Euler Analysis of Advanced Turboprop Propeller Flows,” AIAA paper, no. 86-1521, 1986.
    [19] Denton, J. D., “The Calculation of Three-Dimensional Viscous Flow through Multistage Turbomachines,” Journal of Turbomachinery, vol.114, pp. 18-26, 1992.
    [20] Raj, D. and Swim, W. B., “Measurement of the Mean Flow Velocity and Fluctuations at the Exit of a F-C Centrifugal Fan Rotor,” Journal of Engineering for Power, vol. 103 no. 2, pp. 393-399, 1981.
    [21] Rai, M. M., “Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids,” Journal of Propulsion and Power, vol. 3 no. 5, pp. 387-396, 1987.
    [22] Han, C., “Navier-Stokes Analysis of Three-Dimensional Unsteady Flows Inside Turbine Stages,” AIAA paper no. 92-3211, 28th Joint Propulsion Conference and Exhibit, Nashville, TN, July 1992.
    [23] Zhang, M. J., Pomfret, M. J., and Wong, C. M., “Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point,” Computers & Fluids, vol. 25, No. 5, pp. 497-507, 1996.
    [24] Pak, E. T., and Lee, J. C., “Performance and Pressure Distribution Changes in a Centrifugal Pump under Two-Phase Flow,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, vol. 212, pp. 165-171, 1998.
    [25] 林顯群、黃家烈、簡宏斌、沈銘秋,“軸流風扇之數值與實驗分析”,中華民國航太/燃燒/民航學會航太聯合會議,桃園,第107-117頁,1999.
    [26] Su, S. P., Chen, S. H., Lee, L. C., and Hwang, T. Y., “The Use of CFD in Turbomachinery Applications,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, vol. 32, No. 1, pp. 1-24, 2000.
    [27] 黃福居,“全三維軸流風扇葉片最佳化設計”,成功大學機械工程研究所碩士論文,2001.
    [28] 李海鋒,“利用三維紊流數值模擬進行離心葉輪設計比較”,流體機械,第29卷第9期,第18-22頁,2001.
    [29] Dawes, W. N., Dhanasekaran, P. C., Kellar, W. P., and Savill, A. M., “Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design,” Transactions of the ASME Journal of Turbomachinery, vol. 123, 2001.
    [30] Gonza´lez, J., Ferna´ndez, J., Blanco, E., and Santolaria, C., “Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump,” ASME J. Fluids Eng., vol. 124, pp. 348-355, 2002.
    [31] Majidi, K., “Numerical Study of Unsteady Flow in a Centrifugal Pump,” ASME J. Turbomachinery, vol. 127, pp. 363-371, 2005.
    [32] Bell, R., and Benham, P. P., “Theoretical and Experimental Stress Analysis of Centrifugal Fan Impeller,” J. Strain Anal. , vol. 13, pp. 141-147, 1978.
    [33] Ramamurti, V., Subramani, D. A., and Sridhara, K., “Free Vibration of A Turbocharger Centrifugal Compressor Impeller,” Mech. Mach. Theory, vol. 30, No. 4, pp. 619-628, 1995.
    [34] Moyroud, F., Jacquet-Richarde, G., and Fransson, H. T., “A Modal Coupling for Fluid and Structure Analysis of Turbomachines Futter Application to A Fan Stage,” ASME paper 96-G1-335, pp. 1-19, 1996.
    [35] Bhope, D. V., and Padole, P. M., “Experimental and Theoretical Analysis of Stresses, Noise and Flow in Centrifugal Fan Impeller,” Mech. and Mach. Theory, vol. 39, pp. 1257-1271, 2004.
    [36] Ramamurti, V., and Balasubramanian, P., “Steady State Stress Analysis of Centrifugal Fan Impeller,” Comput. Struct. , vol. 25, pp. 129-155, 1987.
    [37] Nabi, M. S., and Ganeshan, N., “Stress Analysis of Composite Centrifugal Fan Impeller Using The Cyclic Symmetric Approach,” Comput. Struct., vol. 48, pp.781-785, 1993.
    [38] Carstens, V., Kemme, R., and Schmitt, S., “Coupled Simulation of Flow-structure Interaction in Turbomachinery,” Aerospace Science and Technology, vol. 7, pp. 298-306, 2003.
    [39] Gnesin, V. I., Kolodyazhnaya, L. V., and Rzadkowski, R., “A Numerical Modeling of Stator–rotor Interaction in A Turbine Stage with Oscillating Blades,” Journal of Fluids and Structures, vol. 19, pp. 1141-1153, 2004.
    [40] Chen, S. L., and Wang, W. T., “Computer Aided Manufacturing Technologies for Centrifugal Compressor Impellers,” Journal of Materials Processing Technology, vol. 115, Issue. 3, pp. 284-293, 2001.
    [41] Morishige, K., and Takeuchi, Y., “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” IEEE Paper Robotics and Automation, vol. 2, pp. 1241-1246, 1997.
    [42] 莊禮彰,“離心式壓縮機葉輪五軸加工規劃”,台灣大學機械工程研究所博士論文, 2003.
    [43] Tsay, D. M., and Her, M. J., “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, vol. 123, pp. 731-738, 2001.
    [44] Tsay, D. M., Chen, H. C., and Her, M. J., “A Study on Five-axis Flank Machining of Centrifugal Compressor Impellers,” ASME Journal of Engineering for Gas Turbines and Power, vol. 124, pp. 177-181, 2002.
    [45] Karassik, I. J., Messina, J. P., Cooper, P., and Heald, C.C., “Pump Handbook,” McGraw-Hill, New York, 2001.
    [46] 小栗富士雄,小栗達男共著,黃葵森譯,“標準機械設計圖表便覽”,眾文出版社,2005.
    [47] 陳朝光,王明庸,黃泰翔,“機械設計製圖”,高立出版社,1997.
    [48] Stoker, J.J., “Differential Geometry,” Wiley-Interscience, New York, 1969.
    [49] 吳坤憲,“結合創成加工與流場計算之離心泵葉片優化設計”,成功大學機械工程研究所碩士論文,2002.
    [50] 黃彥博,“應用有理樣線法於離心流葉片之優化設計”,成功大學機械工程研究所碩士論文, 2003.
    [51] 邱盟勝,“離心泵葉片五軸加工規劃與流場優化”,成功大學機械工程研究所碩士論文, 2004.
    [52] 莊翔智,“離心泵設計參數與五軸加工規劃之探討”,成功大學機械工程研究所碩士論文, 2005.
    [53] K. Morishige, and Y. Takeuchi, “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp. 1241-1246, 1997.
    [54] Stoker, J.J., “Differential Geometry,” Wiley-Interscience, New York, 1969.
    [55] Groover, M. P., “Fundamentals of Modern Manufacturing,” Wieley, pp.480, 2002.
    [56] Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
    [57] 林博正,崔兆棠,洪振益,杜黎蓉,“CATIA電腦輔助工程分析”,全華科技圖書股份有限公司,2004.
    [58] Shames, I. H., and Dym, C. L., “Energy and Finite Element Methods in Structural Mechanics,” Taylor & Francis, pp. 523, 1991.
    [59] 周永樂,強忠萍,陳景富,“離心式壓縮機之固力分析與設計應用”,機械工業雜誌,第274期,第61-75頁,2006.

    下載圖示 校內:2008-06-27公開
    校外:2012-06-27公開
    QR CODE