簡易檢索 / 詳目顯示

研究生: 涂子凡
Tu, Tzu-Fan
論文名稱: 鋼結構承受爆炸之高溫行為研究
A Study on High Temperature Structural Behavior of Steel Structures with Impulsive Load
指導教授: 邱耀正
Chiou, Yaw-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 118
中文關鍵詞: 向量式有限元素法非線性分析應變速率衝擊載重爆炸鋼結構火害
外文關鍵詞: Vector Form Intrinsic Finite Element (VFIFE), nonlinear, analysis, strain-rate, impulsive load, blast load, steel structures, fire
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以包含溫度效應之向量式有限元素法之理論為基礎,加入處理劇烈應變速率的材料模式,建立平面鋼結構於高溫或者常溫環境下,受到爆炸力作用的數值分析模式。本文所建立之分析模式,先透過與文獻中相關之數值範例結果比較,以確保分析模式之正確性及適用性。驗證結果顯示,本文所建立鋼結構在承受爆炸載重下的分析效果良好,可有效模擬鋼結構於爆炸力作用下的結構行為。
    接下來,根據本文建立之數值分析模式,分別討論不同邊界條件梁、柱桿件單純於爆炸力作用下之影響,之後將其置於全均溫溫度場以模擬梁、柱桿件於爆炸後發火害或者在火災過程中受到爆炸力作用之結構行為。最後,將應用推廣至單跨門型鋼架,討論其在僅受火害、僅受爆炸以及爆炸與火害複合作用下之結構行為。本文亦將數值分析結果與現有規範進行比較,探討結構於爆炸力作用下,這些規範的適用性。

    This study adopted the Vector Form Intrinsic Finite Element (VFIFE) method to investigate the nonlinear behavior of steel structures under combined effects of impact, explosion, and fire. Detailed requirements for modeling elasto-plastic materials subjected to elevated temperature and high-strain rates are presented. The numerical model is first verified by comparing the results with the published analytical results for steel structures. Verification examples show that the proposed model can effectively predict the nonlinear behavior of the steel structure under effect of explosion.
    According to the proposed method, several numerical analyses are presented. At first the steel beam and column are model in different support conditions, then consider that the structures subject to only explosion loading or explosion loading followed by fire. The influence of blast loads on the fire resistance of one story, one span steel frame is finally studied. This paper also compares the analysis results with some current codes, to check these codes are suitable or not when the steel structures are subjected to blast loading and fire.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文內容與架構 6 第二章 爆炸資料及其對鋼材性能之影響 8 2.1 爆炸行為概述 8 2.1.1 爆炸特徵 8 2.1.2 爆炸分類 10 2.2 爆炸對鋼材性能之影響 10 2.2.1 試驗結果 10 2.2.2 彈塑性理論 12 2.2.3 鋼材之速率函數 13 第三章 高溫環境下鋼材性能資料 20 3.1 國外高溫環境下鋼材性能資料 20 3.1.1 降伏強度與彈性模數 20 3.1.2 熱膨脹係數 23 3.1.3 單位質量 24 3.2 臨界溫度 24 第四章 含爆炸效應之向量式有限元分析 33 4.1 向量式有限元素法 33 4.1.1 基本假設與離散化 33 4.1.2 移動基礎架構與虛構反向剛體運動 36 4.1.3 常溫下平面剛架元素節點內力 37 4.1.4 具溫度效應平面剛架元素節點內力 40 4.1.5 爆炸力的處理模式 43 4.2 數值分析模式之驗證 44 4.2.1 簡支梁受不同爆炸力之數值驗證 45 4.2.2 受壓鋼柱承受不同側向爆炸力之數值驗證 45 第五章 梁桿件於爆炸及高溫作用下之行為 53 5.1 鋼梁於爆炸作用下之行為 53 5.1.1 塑性應變率之影響 53 5.1.2 彈性係數之影響 54 5.1.3 爆炸力形式之影響 55 5.1.4 不同軸向束制鋼梁於爆炸作用下之行為 56 5.2 鋼梁於爆炸及高溫作用下之行為 57 5.2.1 不同軸向束制鋼梁於爆炸後產生火災之影響 57 5.2.2 不同軸向束制梁於火災過程中受爆炸力作用之影響 60 5.3 規範檢核 61 第六章 柱與剛架於爆炸及高溫作用下之行為 80 6.1 柱桿件於爆炸及高溫作用下之行為 80 6.1.1 受壓鋼柱於爆炸力作用下之行為 80 6.1.2 受壓鋼柱於爆炸後產生火災之影響 82 6.1.3 受壓鋼柱於火災過程中受爆炸力作用之影響 85 6.1.4 規範檢核 86 6.2 門型剛架於爆炸力及高溫作用下之行為 87 6.2.1 門型剛架於爆炸力作用下之行為 87 6.2.2 門型剛架於爆炸後發火害之行為 88 6.2.3門型剛架於火災過程中受爆炸力作用之影響 90 第七章 結論與建議 110 參考文獻 113

    ASCE Manuals and Reports on Engineering Practice No.78, “Structural Fire Protection,” ASCE, New York, 1992.

    Bennetts, I.D., Proe, D.J., and Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structural Steel Members,” AISC(Australian Institute of Steel Construction),p3,1990.

    Biggs, J.M., “Introduction to Structural Dynamics,” McGraw-Hill, Inc., New York, 1964.

    Bodner, S.R. and Symonds, P.S., “Plastic deformations in impact and impulsive loading of beams,” Proceedings of the Second Symposium on Naval Structural Mechanics, Rhode Island, USA, 488-500, 1960.

    Borenstein, E. and Benaroya, H., “Sensitivity analysis of blast loading parameters and their trends as uncertainly increases.” Journal of Sound and Vibration, Vol.321, p.762-785, 2009

    BSI, “Fire Tests on Building Materials and Structure,”Part20, Method for Determination of the Fire Resistance of Construction (General Principles), 1987.

    BSI, “Structural Use of Steelwork in Building,”Part8, Code of Practice for Fire Resistance Design, 2003

    Buchanan, A., Moss, P., Seputro, J., and Welsh, R., “The Effect of Stress-Strain Relationships on the Fire Performance of Steel Beams,” Engineering Structures,
    Vol.26,p.1505-1515, 2004.

    CEB, “Structures under impact and impulsive loading,” Bulletin d’Information No. 187, Comite Euro-International de Beton, CEB, 1988.

    Charis, J.G. and Nikos, G.P., “Elastic-plastic response spectra for exponential blast loading.” International Journal of Impact Engineering,Vol.30, p.323-343, 2004.

    Chen, C., Yao, B., Yang, Y., Cai, X., Zhang, H., and Wan, Y., “Experimental Study on Temperature Distribution and Response Behaviors of Steel Element under Corner Fire Conditions,” Engineering Science, Vol.7, p.70-75, 2005

    Cong, S.P., Liang, S.T., and Dong, Y.L., “Experimental Investigation of Behavior of Simple Supported Steel Beams under Fire,” Journal of Southeast University, Vol.35, p.66-68, 2005

    ECCS-Technical Committee 3, “European Recommendations for the Fire Safety of Steel Structures,” Elsevier Scientific, New York,1983.

    EUROCODE3,“Design of steel structures-Part1.2:General Rules-Structural Fire Design.” (DD ENV 1993-2-3:2001 Corrected and reprinted September).

    Ginda, G., Skowronski, W., “Elasto-Plastic Creep Behavior and Load
    Capacity of Steel Columns During Fire,” Journal of Construction Steel Research, Vol.46, p.312-313, 1998.

    Headquarters Departments of the US Army, TM5-1300, “Structures to resist the effects of accidental explosions”, November, 1990.

    Hiroe, T., Matsuo, H., Fujiwara, K., Abe, T., Kusumegi, K., and Katoh, T.,
    “Dynamic behavior of materials induced by explosive loadings initiated using wire explosion techniques.” Journal of Materials Processing Technology, Vol.85, p.56-59, 1999.

    Huang, Z.H., Burgess, I.W., and Plank, R.J., “Three-dimensional analysis of composite steel-framed buildings in fire,” Journal of Structural Engineering, Vol.126, p.389-397, 2000.

    ISO834-1,“Fire-Resistance Tests-Elements of Building Construction,”1999.

    Izzuddin, B.A. and Fang, Q., “Rate-sensitive analysis of framed structures Part I: model formulation and verification.”Structural Engineering and Mechanics, Vol.5, No.3, p.221-237, 1997.

    Izzuddin, B. A. and Fang, Q., “Rate-sensitive analysis of framed structures Part II: implementation and application to steel and R/C frames.”Structural Engineering and Mechanics, Vol.5, No.3, p.239- 256, 1997.

    Izzuddin, B.A, Song, L., Elnashai, A.S., and Dowling, P.J., “An integrated adaptive environment for fire and explosion analysis of steel frames-PartI: analytical models.” Journal of Constructional Steel Research, Vol.53, p.63-85, 2000.

    Izzuddin, B.A, Song, L., Elnashai, A.S., and Dowling, P.J., “An integrated adaptive environment for fire and explosion analysis of steel frames-PartII: verification and application.” Journal of Constructional Steel Research, Vol.53, p.87-111, 2000.

    Jama,H .H., Bambach, M.R., Nurick, G.N., Grzebieta,R.H., and Zhao, X.L., “Numerical modeling of square tubular steel beams subjected to transverse blast loads,” Thin-Walled Structures, Vol. 47, p.1523-1534, 2009.

    JIS, “A1340 Method of Fire Resistance Test for Structural Parts of Buildings,”1994.

    Kinney, G.F. and Graham, K.J., Explosive shocks in air, second edition, 1985.

    Liew, J.Y.R., M.ASCE, and Chen, H., “Explosion and Fire Analysis of Steel Frames Using Fiber Element Approach.” Journal of Structural Engineering, Vol.130, No.7, p.991-1000, 2004.

    Liew, J.Y.R., M.ASCE, and Chen, H, “Explosion and Fire Analysis of Steel Frames Using Mixed Element Approach.” Journal of Structural Engineering, Vol.131, No.6, p.606-616, 2005.

    Liew, J.Y.R. “Survivability of steel frame structures subject to blast and fire.” Journal of Constructional Steel Research, Vol.64, p.854-866, 2008.

    Liu, T.C.H., Fahad, M.K., and Davies, J.M., “Experimental Investigation of Behavior of Axially Restrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol.58, p.1211-1230, 2002.

    Malvern, L.E., “The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect,” Journal of Applied Mechanics, ASME, Vol. 18, No.2, p.203-208, 1951.

    Manzocchi, G.M.E.., “The effect of strain-rate on steel structures,” MSc dissertation, Civil Engineering Department, Imperial College, London, U.K., 1991.

    Nonaka, T. “Shear failure of a steel member due to a blast.” International Journal of Impact Engineering, Vol.24, p.231-238, 2000.

    Perzyna, P., “Fundamental problems in viscoplasticity,” Advances in Applied Mechanics, Vol.9, p.313-377, 1966.

    Rodrigues, J.P.C., Neves, I.C.,and Valente, J.C., “Experimental Research on the Critical Temperature of Compressed Steel Elements with Restrained Thermal Elongation,” Fire Safety Journal, Vol.35, p.77-98, 2000.

    Ronald, L.S. “Response of Wide Flange Steel Columns Subjected to Constant Axial Load and Lateral Blast Load.”, thesis, 2006.

    Soroushian, P. and Choi, K., “Steel mechanical properties at different strain rates,” Journal of Structural Engineering, ASCE, Vol.113, No.4, p.663-673, 1987.

    Tadaharu, A. and Tetsuya, T., “Effect of transverse impact on buckling behavior of a column under static axial compressive force.” International Journal of Impact Engineering, Vol.30, p.465-475, 2004.

    Tapan, S., Daniel, L., and Theodor, K., “Finite element analysis of steel beam to column connections subjected to blast loads.” International Journal of Impact Engineering, Vol.31, p.861-876, 2005.

    Ting, E.C., Shih, C. and Wang, Y.K., “Fundamentals of a vector form intrinsic finite element:PartI. Basic procedure and a plan frame element.”Journal of Mechanics, Vol.20, No.2, p.113-122, 2004a.

    Ting, E.C., Shih, C. and Wang, Y.K., “Fundamentals of a vector form intrinsic finite element:PartII. Plane solid elements,” Journal of Mechanics, Vol.20, No.2, p.123-132, 2004b.

    Toh, W.S., Tan, K.H., Fung, T.C., “Strength and stability of steel frames in fire: Rankine approach,” Journal of Structural Engineering, Vol.127,p.461-469, 2001.

    Tre ́lat,S.,Sochet,I.,Autrusson,B.,Cheval,K.,and Loiseau,O., “Impact of a shock wave on a structure on explosion at altitude.” Journal of Loss Prevention in the Process Industries, Vol.20, p.509-516, 2007.
    US DOE, U.S. Department of Energy, 1992.

    Yandzio, E. and Gough, M., Protection of buildings against explosions, The Steel Construction Institute, Ascot, U.K., 1999.

    Zhou, X.Q., and Hao. H, “Prediction of airblast loads on structures behind a protective barrier.” International Journal of Impact Engineering, Vol.35, p.363-375, 2007.

    中國國家標準局CNS,總號 12514,建築物構造部分的耐火試驗法,台灣,2000。

    王仁佐,「向量式結構運動分析」,博士論文,國立中央大學土木工程研究所,中壢,2005。

    陳生金,「鋼結構設計:極限設計法與容許應力設計法」,科技圖書出版,2001。

    莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南,2003。

    連寬宏,「高溫環境下鋼結構之向量式有限元分析」,博士論文,國立成功大學土木研究所,台南,2009。

    張燕茹,「鋼結構火害反應之向量式有限元素法分析」,碩士論文,國立成功大學
    土木工程研究所,台南,2007。

    下載圖示 校內:2011-08-25公開
    校外:2011-08-25公開
    QR CODE