簡易檢索 / 詳目顯示

研究生: 黃俊蓉
Huang, Jyun-Rong
論文名稱: 不同磁通分布對磁顆粒於層流中軌跡模擬計算及觀測
Simulation and Observation of Magnetic Particle Trajectory under Laminar Flow with Different Magnetic Flux Distribution
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 磁藥物傳輸系統磁顆粒軌跡模擬磁力計算微流道永久磁鐵超導體經驗公式
外文關鍵詞: Magnetic Drug Delivery System, Magnetic particle trajectory simulation, Magnetic force calculation, Fludic channel, Permanent magnet, Superconductor, Empirical formula
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 2 第二章 理論基礎與文獻回顧 3 2-1 磁藥物傳輸系統發展、應用及困境 3 2-1-1 人體臨床實驗[4, 5] 3 2-1-2 動物實驗[6-8] 6 2-1-3 發展困境及技術限制[9-12] 13 2-2 磁藥物傳輸系統研究 16 2-2-1 靜態沉降實驗[13, 14] 16 2-2-2 動態流動實驗[15] 19 2-3 磁藥物傳輸外加磁場源選擇 21 2-3-1 永久磁鐵作為磁場源[16] 21 2-3-2 電磁線圈作為磁場源[17] 23 2-3-3 高溫超導體作為磁場源[18, 19] 26 2-4 磁顆粒軌跡模擬 29 2-4-1 磁化理論[20] 29 2-4-2 磁顆粒於流體中行為討論 34 2-4-3 磁力計算[23, 24] 36 第三章 實驗方法及步驟 37 3-1 實驗材料 37 3-1-1 磁性顆粒 37 3-1-2 流體 38 3-1-3 磁場源性質及前處理 39 3-1-4 微流道製作 41 3-2 軌跡計算模型 42 3-2-1 軌跡計算模型建構[13, 14, 31] 43 3-2-2 磁場源性質量測及計算 45 3-2-3 磁顆粒軌跡計算模型驗證 46 3-3 實驗儀器及設備 47 第四章 實驗結果與討論 48 4-1 外加磁場源性質量測及計算 48 4-1-1 永久磁鐵性質量測及計算 48 4-1-2 超導體性質量測及計算 50 4-1-3 磁場源性質比較 51 4-2 磁顆粒軌跡模型可靠性驗證 54 4-2-1 無外加磁場下模型可靠性驗證 54 4-2-2 永久磁鐵下模型可靠性驗證 57 4-2-3 超導體下模型可靠性驗證 61 4-3 磁顆粒之臨界吸附粒徑評估 63 4-3-1 以葡萄糖水為流體之臨界吸附粒徑評估 65 4-3-2 以血液為流體之臨界吸附粒徑評估 71 4-3-3 臨界吸附粒徑之經驗公式建立 77 第五章 結論 81 參考文獻 84

    [1] S. Mitragotri and J. Lahann, "Materials for drug delivery: innovative solutions to address complex biological hurdles," 2012.
    [2] K. J. Widder, A. E. Senyei, and D. F. Ranney, "In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres," Cancer research, vol. 40, no. 10, pp. 3512-3517, 1980.
    [3] B. Shapiro, "Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body," Journal of magnetism and magnetic materials, vol. 321, no. 10, pp. 1594-1599, 2009.
    [4] A. S. Lübbe et al., "Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors," Cancer research, vol. 56, no. 20, pp. 4686-4693, 1996.
    [5] M. W. Wilson et al., "Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients," Radiology, vol. 230, no. 1, pp. 287-293, 2004.
    [6] S. Goodwin, C. Peterson, C. Hoh, and C. Bittner, "Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy," Journal of magnetism and magnetic materials, vol. 194, no. 1-3, pp. 132-139, 1999.
    [7] M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, "Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver—magnetic nanoparticles in cancer treatment," Journal of Surgical Research, vol. 175, no. 1, pp. 35-43, 2012.
    [8] O. A. Mayorova et al., "Endovascular addressing improves the effectiveness of magnetic targeting of drug carrier. Comparison with the conventional administration method," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 28, p. 102184, 2020.
    [9] M. Shamsi, A. Sedaghatkish, M. Dejam, M. Saghafian, M. Mohammadi, and A. Sanati-Nezhad, "Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy," Drug delivery, vol. 25, no. 1, pp. 846-861, 2018.
    [10] P. M. Price, W. E. Mahmoud, A. A. Al-Ghamdi, and L. M. Bronstein, "Magnetic drug delivery: where the field is going," Frontiers in chemistry, vol. 6, p. 619, 2018.
    [11] B. Shapiro, S. Kulkarni, A. Nacev, S. Muro, P. Y. Stepanov, and I. N. Weinberg, "Open challenges in magnetic drug targeting," Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 7, no. 3, pp. 446-457, 2015.
    [12] Y.-L. Liu, D. Chen, P. Shang, and D.-C. Yin, "A review of magnet systems for targeted drug delivery," Journal of Controlled Release, vol. 302, pp. 90-104, 2019.
    [13] 張維軒, "以高溫超導塊材擄獲磁場進行磁粒子軌跡計算及觀測研究," 2020.
    [14] C.-M. Yang, W.-H. Chang, J.-R. Huang, and I.-G. Chen, "Simulation and observation of magnetic particles captured in fluids using high temperature superconductor bulk," IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1-4, 2021.
    [15] L. C. Barnsley, D. Carugo, M. Aron, and E. Stride, "Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays," Physics in Medicine & Biology, vol. 62, no. 6, p. 2333, 2017.
    [16] H. Kee, H. Lee, and S. Park, "Optimized Halbach array for focused magnetic drug targeting," Journal of Magnetism and Magnetic Materials, vol. 514, p. 167180, 2020.
    [17] A. K. Hoshiar, T.-A. Le, F. U. Amin, M. O. Kim, and J. Yoon, "Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels," Journal of Magnetism and Magnetic Materials, vol. 427, pp. 181-187, 2017.
    [18] F. Mishima, Y. Akiyama, and S. Nishijima, "A study on accumulation of magnetic drug in the capillary vessel of target organ using superconducting MDDS," Physica C: Superconductivity and its applications, vol. 470, no. 20, pp. 1837-1840, 2010.
    [19] K. Nakagawa, F. Mishima, Y. Akiyama, and S. Nishijima, "Study on magnetic drug delivery system using HTS bulk magnet," IEEE transactions on applied superconductivity, vol. 22, no. 3, pp. 4903804-4903804, 2011.
    [20] I. G. Chen, J. Liu, R. Weinstein, and K. Lau, "Characterization of YBa2Cu3O7, including critical current density J c, by trapped magnetic field," Journal of applied physics, vol. 72, no. 3, pp. 1013-1020, 1992.
    [21] M. Jalaal, D. Ganji, and G. Ahmadi, "Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media," Advanced Powder Technology, vol. 21, no. 3, pp. 298-304, 2010.
    [22] J. Ferreira, M. Duarte Naia, and R. Chhabra, "An analytical study of the transient motion of a dense rigid sphere in an incompressible Newtonian fluid," Chemical Engineering Communications, vol. 168, no. 1, pp. 45-58, 1998.
    [23] Y. Yan, Y. Ma, and J. Liu, "Analysis and correction of the magnetometer’s position error in a cross-shaped magnetic tensor gradiometer," Sensors, vol. 20, no. 5, p. 1290, 2020.
    [24] X. Han, Q. Cao, and L. Li, "Design and evaluation of three-dimensional electromagnetic guide system for magnetic drug delivery," IEEE transactions on applied superconductivity, vol. 22, no. 3, pp. 4401404-4401404, 2011.
    [25] D. Zhi, T. Yang, J. Yang, S. Fu, and S. Zhang, "Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy," Acta biomaterialia, vol. 102, pp. 13-34, 2020.
    [26] J.-H. Lee, J.-w. Kim, and J. Cheon, "Magnetic nanoparticles for multi-imaging and drug delivery," Molecules and cells, vol. 35, no. 4, pp. 274-284, 2013.
    [27] A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, "Nanoparticles as drug delivery systems," Pharmacological reports, vol. 64, no. 5, pp. 1020-1037, 2012.
    [28] C. Janko et al., "Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy," Frontiers in oncology, vol. 9, p. 59, 2019.
    [29] S. O. Aisida, P. A. Akpa, I. Ahmad, T.-k. Zhao, M. Maaza, and F. I. Ezema, "Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications," European polymer journal, vol. 122, p. 109371, 2020.
    [30] K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek, and R. Zboril, "Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies," Chemical reviews, vol. 116, no. 9, pp. 5338-5431, 2016.
    [31] J.-R. Huang, C.-M. Yang, W.-H. Chang, and I.-G. Chen, "Simulation of Particle Trajectory Under Laminar Flow for MDDS Application," IEEE Transactions on Applied Superconductivity, vol. 32, no. 6, pp. 1-5, 2022.
    [32] M. K. Manshadi et al., "Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy," Drug delivery, vol. 25, no. 1, pp. 1963-1973, 2018.
    [33] M. Klarhöfer, B. Csapo, C. Balassy, J. Szeles, and E. Moser, "High‐resolution blood flow velocity measurements in the human finger," Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 45, no. 4, pp. 716-719, 2001.
    [34] S. Sharma, V. Katiyar, and U. Singh, "Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field," Journal of Magnetism and Magnetic Materials, vol. 379, pp. 102-107, 2015.
    [35] V. R. N. Telis, J. Telis-Romero, H. Mazzotti, and A. L. Gabas, "Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations," International Journal of food properties, vol. 10, no. 1, pp. 185-195, 2007.
    [36] M. Tomita and M. Murakami, "Effect of resin layer on the thermal stress of bulk superconductors," Physica C: Superconductivity, vol. 392, pp. 493-498, 2003.

    無法下載圖示 校內:2027-09-04公開
    校外:2027-09-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE