| 研究生: |
許銘修 Hsu, Ming-Shiou |
|---|---|
| 論文名稱: |
帶狀石墨烯波導及共振腔模態 Guiding and Resonant Modes in Graphene Ribbon structure |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 石墨烯 、hard-boundary波導 、soft-boundary波導 、量子級聯雷射共振腔 |
| 外文關鍵詞: | graphene, hard-boundary waveguide, soft-boundary waveguide, ring resonator |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在探討石墨烯特性,以及模擬石墨烯nanoribbon波導模態和共振腔模態,石墨烯的電導率分為intra-band和inter-band兩個部分,而intra-band的部分可以利用Drude model來fitting,但是inter-band由於是複數對數的形式,而不是j的多項式,因此無法直接代入FDTD,但是本實驗室發展出一套方法提供了一個有效的近似模型,可以fitting出石墨烯inter-band的部分,並使之可以代入FDTD來進行模擬,我們以此套模型為基礎去模擬出hard-boundary和soft-boundary的石墨烯nanoribbon,畫出其色散關係圖,並且分析模態和其特性,之後再模擬分析石墨烯nanoribbon下加了介電層的影響,最後為了因應量子級聯雷射(Quantum Cascaded laser)的長波段雷射,我們設置了一個石墨烯的環形共振腔,利用其波導模態的高等效折射率能將長波段有效壓縮至石墨烯nanoribbon中的特性,模擬並分析可雷射的共振腔模態。
This thesis mainly discusses the finite difference time domain method to describe graphene plasmonic properties and simulates graphene nanoribbon waveguide and resonant cavity modes. The conductivity of graphene consists of two parts: intra-band and inter-band. While the intra-band part can be fitted by Drude model, Inter-band is a form of complex logarithm, not a polynomial of (jn terms, and cannot be directly implemented in FDTD. We developed an effective approximation method to fit the inter-band of graphene over a broadband range. Based on this model, we simulate the hard-boundary and soft-boundary graphene nanoribbon to obtain the dispersion relation, and analyze these waveguide modes. We further simulated and analyzed the effect of the dielectric layer on the graphene nanoribbon. Finally, we design a ring-shaped resonant cavity of graphene nanoribbon to effectively compress the long-wavelength of the quantum cascaded laser light into a cavity with a small footprint. This is accomplished by using the high effective refractive index of graphene nanoribbon. We further simulated and analyzed the laser resonator modes of graphene nanoribbon ring cavity.
[1] Kohlschütter, V. and Haenni, P. “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure,” Zeitschrift fur Anorganische und Allgemeine Chemie ,105,121-144 (1918)
[2]P. R. Wallace. “The Band Theory of Graphite,” Physical Review 71, 622 (1947)
[3] G. Ruess and F. Vogt, “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd,” Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 78(3–4),222–242(1948)
[4] H. P. Boehm, “Nomenclature and Terminology of Graphite Intercalation Compounds,” Pure &Appl. Chem.,66(9),1893-1901 (1994)
[5] A. K. Geim and K. S. Novoselov, “The Rise of graphene,” Nature Materials, 6,183–191(2007)
[6] J. C. Meyer, “The structure of suspended graphene sheets,” Nature,446,60–63 (2007)
[7] S. Ishida , Y. Anno, “Highly photosensitive graphene field-effect transistor with optical memory function,”Scientific Reports, 5(15491) (2015)
[8] A. Vakil, “Transformation optics using graphene:one-atom-thick optical devices based on graphene,” Science,332(6035),1291-1294 (2011)
[9] X. Y. He and R. Li, “Comparison of Graphene-Based Transverse Magnetic and Electric Surface Plasmon Modes,” IEEE Journal of Selected Topics in Quantum Electronics, 20(1),62-67(2014)
[10] K. S. YEE, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, 14(3),302-307(1966)
[11] F. Xu, K. Wu, “A Compact 2-D Finite-Difference Time-Domain Method for General Lossy Guiding Structures,” IEEE Transactions on Antennas and Propagation 56(2), 501-506 (2008)
[12] M. Potter and J. P. Bérenger, “A Review of the Total Field/Scattered Field Technique for the FDTD Method,” FERMAT, 19(1), (2017)
[13] J. P. Berenger, “ A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,’’ Journal of Computational Physics ,114(2), 185-200(1994)
[14] J. Alan Roden and S. D. Gedney,“ Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,’’ Microwave and optical technology letters, 27(5),334-339(2000)
[15] L. A. Falkovsky and C.C. Persheguba, “ Optical far-infrared properties of graphene monolayer and multilayers,” Physical Review, 76(15),153410 (2007)
[16] G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, 103, 064302 (2008)
[17] R. P. Kelisky and T. J. Rivlin, “A Rational Approximation to the Logarithm,”Math Comp, 22 , 128-136. (1968)
[18] Y. Francescato , V. Giannini and S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,”New Journal of Physics, 15(6),063020,(2013)
[19] J. Christensen, Alejandro Manjavacas,Sukosin Thongrattanasiri,Frank H. L. Koppens, and F. Javier Garcı´a de Abajo, “Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons,” ACS nano, 6(1), 431–440(2011)
[20] E. Forati and G. W. Hanson, “Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application in switching,”Applied Physics Letters, 103(13),133104 (2013)
校內:2024-01-25公開