| 研究生: |
郭琢琪 Guo, Zhuo-Qi |
|---|---|
| 論文名稱: |
石榴子石的拉曼光譜研究: 化學成份與拉曼位移之間的相關性 Raman Spectroscopy Study of Silicate Garnet: Systematic Relation between Chemical Composition and Raman Shift |
| 指導教授: |
龔慧貞
Kung, Hui-Chen 黃怡禎 Huang, Eugene |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 矽酸鹽石榴子石 、拉曼光譜 、固溶體 、鎂鋁榴石-鐵鋁榴石系列 、鈣鋁榴石-鈣鐵榴石系列 |
| 外文關鍵詞: | silicate garnet, Raman spectroscopy, solid solution, pyrope-almandine binary, grossular-andradite binary |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石榴子石是在每個大陸的變質岩與火成岩中發現的最常見和最廣泛的寶石之一。石榴石是正矽酸鹽家族的總稱。所有石榴子石的晶體結構基本相同,但化學成分不同。石榴子石的種類有二十多種,但只有六種在商業上作為重要的寶石。這六種是鎂鋁榴石,鐵鋁榴石,錳鋁榴石,鈣鋁榴石,鈣鐵榴石和鈣鉻榴石。石榴石的種類通常是根據其顏色外觀而非準確的化學分析方法來判定。但是,即使經驗豐富的寶石學家對於石榴子石的種類判斷依然會經常有偏差。
拉曼光譜技術是寶石學研究上必不可少的分析技術。拉曼現象是一種非彈性散射,基於光與材料內分子鍵的相互作用,用於判測分子的振動模式。拉曼光譜儀是大多數寶石學實驗室必備的工具,其分析是快速且無損的。
在這項研究中,我們測量天然矽酸鹽石榴子石群以及其固溶體,尤其關注鎂鋁榴石-鐵鋁榴石固溶體系列以及鈣鋁榴石-鈣鐵榴石固溶體系列的單晶拉曼光譜。能量色散X-射線光譜儀(EDS)將用於樣本相應的化學成分分析。藉由收集拉曼光譜和化學成分的數據,定出鎂鋁榴石-鐵鋁榴石固溶體系列以及鈣鋁榴石-鈣鐵榴石固溶體系列當中各振動模波數與主成分的關係方程式。除了可以對各系列的石榴子石進行種別的劃分外,也可以藉以判定成份未知的硅酸鹽石榴子石的半定量化學組成。更重要的是,經由每個寶石實驗室中都配置的無損拉曼光譜測試來推測石榴子石之對應化學成分,將成為極為方便且低成本的石榴子石及其它固溶液寶石之鑒定程序。
Garnet is one of the most common and widespread gemstones found in metamorphic and volcanic rocks on every continent. The crystal structure of all garnet is basically the same, but the chemical composition is quite different. There are more than twenty types of garnets, but only six are commercially important gems, namely almandine, grossular, andradite, uvarovite, spessartine and pyrope. The identification of garnet species is usually determined by its color and appearance rather than by accurate chemical analysis, but even experienced gemologists can often be wrong about the identification of garnet species.
Raman spectroscopy is an indispensable analytical technique in gemological research. As an inelastic scattering effect, Raman signals results from vibration mode of molecules based on the interaction between light and the molecular bonds in the material. The Raman spectrometer is an essential tool in most gemological laboratories and its analysis is rapid and nondestructive.
The study aims to provide reliable experimental data of silicate garnet by non-destructive, efficient Raman spectroscopy testing. The single crystal Raman spectra of natural silicate garnets with compositions close to end-member almandine, grossular, andradite, uvarovite, spessartine and pyrope along with the Raman spectra of their solid solutions are measured. Energy Dispersive Spectrometer (EDS) will be applied for corresponding chemical composition analysis on each specimen studied. We found that most of the wavenumber of Raman modes show linear relationship with major component of garnet. Our results can provide reliable way of determining mineral species of garnet group, especially pyrope-almandine and grossular-andradite binaries. Moreover, the chemical composition of major elements can also be semi-quantitatively determined. It is promising that Raman spectroscopic method can be adopted in all gemological laboratories for the quick and non-destructive determination of mineral species of garnets and other gemstones of solid solution.
References
Abrahams, S. C. & Geller, S. (1958). Refinement of the structure of a grossularite garnet. Acta Crystallogr. 11, 437–441.
Armbruster, T. & Geiger, C. A. (1993). Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. Eur. J. Mineral. 5, 59–71.
Bersani, D. et al. (2009). Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 73, 484–491.
Cheng, Wen-Hsing. (1998), Raman Spectroscopic Study of Garnet, Master's thesis, Institute of Applied Geology, National Central University.
Chopelas, A. (2005). Single crystal Raman spectrum of uvarovite, Ca3Cr2Si3O12. Phys. Chem. Miner. 32, 525–530.
DeAngelis, B. A., Newham, R. E. & White, W. B. (1972). Factor Group Analysis of the Vibrational Spectra of Crystals: a Review and Consolidation. Anerican Mineral. 57, 255–268.
Du, W., Han, B., Clark, S. M., Wang, Y. & Liu, X. (2018). Raman spectroscopic study of synthetic pyrope–grossular garnets: structural implications. Phys. Chem. Miner. 45, 197–209.
Euler, F. & Bruce, J. A. (1965). Oxygen coordinates of compounds with garnet structure. Acta Crystallogr. 19, 971–978.
Frost, R. L. et al. (2014). Raman, infrared and near-infrared spectroscopic characterization of the herderite-hydroxylherderite mineral series. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 118, 430–437.
Geiger, C. A. (2008). Silicate garnet: A micro to macroscopic (re)view. Am. Mineral. 93, 360–372.
Grew, E. S. et al. (2013). IMA report: Nomenclature of the garnet supergroup. Am. Mineral. 98, 785–810.
Hofmeister, A. M. & Chopelas, A. (1991). Vibrational spectroscopy of end-member silicate garnets. Phys. Chem. Miner. 17, 503–526.
Izawa, M. R. M. et al. (2018). Spectral reflectance (0.35–2.5 µm) properties of garnets: Implications for remote sensing detection and characterization. Icarus 300, 392–410.
Kolesov, B. A. & Geiger, C. A. (1998). Raman spectra of silicate garnets. Phys. Chem. Miner. 25, 142–151.
Koningstein, J. A. & Mortensen, O. S. (1968). Laser-excited phonon Raman spectrum of garnets. J. Mol. Spectrosc.
Kuebler, K. E., Jolliff, B. L., Wang, A. & Haskin, L. A. (2006). Extracting olivine ( Fo – Fa ) compositions from Raman spectral peak positions. 70, 6201–6222.
Locock, A. J. (2008). An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 34, 1769–1780.
Mingsheng, P., Mao, H. K., Dien, L. & Chao, E. C. T. (1994). Raman spectroscopy of garnet-group minerals. Chinese J. Geochemistry 13, 176–183.
Mortensen, O. S. & Koningstein, J. A.(1968). Electronic Raman Effect. II. Asymmetry of the Scattering Tensor for Electronic Raman Transitions. J. Chem. Phys. 48, 3971–3977.
Mouri, T. & Enami, M. (2008). Raman spectroscopic study of olivine-group minerals. 100–104.
Mzembe, A. N. & Downs, Y. (2014). Managerial and stakeholder perceptions of an Africa-based multinational mining company’s Corporate Social Responsibility (CSR). Extr. Ind. Soc.
Novak, G. A. & Gibbs, G. V. (1971). The Crystal Chemistry of the Silicate Garnets. Am. Mineral. 56, 791–825.
Rividi, N. et al. (2010). Calibration of carbonate composition using micro-raman analysis: application to planetary surface exploration. Astrobiology 10, 293–309.
Serov, R., Shelementiev, Y. & Mashkina, A. (2011). Identification of the garnet chemical composition and color causes by express Raman and visible spectroscopy. 47, 2011.
Spalding, I. J. (1988). Applied Laser Tooling. J. Mod. Opt. 35, 754–755.
L. Liu & T. P. Mernagh. (1990). Pressure dependence of raman-spectra from the garnet end-members pyrope, grossularite and almandite. J. Raman Spectrosc 21, 305-309.
Tesar, K. et al. (2019). Raman scattering yields cubic crystal grain or orientation. Sci. Rep. 1–8.
Uang, E. H., Hen, C. H. C., Uang, T. H., In, E. H. L. & An, J. I. X. U. (2000). Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. 85, 473–479.
Wickersheim, K. A., Lefever, R. A. & Hanking, B. M. (1960). Infrared absorption spectrum of the silicate ion in the garnet structure. J. Chem. Phys. 32, 271–276.