簡易檢索 / 詳目顯示

研究生: 連乾翰
Lian, Qian-Han
論文名稱: 等向熱黏彈流體與等向熱線彈固體間無滑移邊界條件之數學分析
Mathematical analyses of the no-slip boundary conditions for isotropic viscous thermoelastic fluids with isotropic linear thermoelastic solids
指導教授: 方中
Fang, Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: 無滑移邊界條件等向熱黏彈流體等向熱線彈固體流固耦合連體力學非平衡熱力學
外文關鍵詞: No-slip boundary conditions, Isotropic viscous thermoelastic fluids, Isotropic linear thermoelastic solids, Fluid-structure interaction, Continuum mechanics, Rational thermodynamics
相關次數: 點閱:251下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分別針對等向熱黏彈流體與剛體和等向熱黏彈流體與等向熱線彈固體兩種情形的共同邊界進行無滑移邊界條件之數學分析。透過本文的分析可以得出此兩種情況的無滑移邊界條件為數學推導的結果。藉由引入拉格朗日乘子,可以將守恆方程式作為限制條件與熵增不等式結合為一體,使分析可以同時滿足各項物理定律。並透過非平衡熱力學和連體力學的概念,可以得出等向熱黏彈流體與剛體和等向熱黏彈流體與等向熱線彈固體兩種情況的無滑移邊界條件在數學上為自然推導的結果。要言之,無滑移邊界條件是自然結論,而非人為假設。

    In the thesis, the no-slip boundary conditions between isotropic viscous thermoelastic fluids and rigid bodies, and those between isotropic viscous thermoelastic fluids with isotropic linear thermoelastic solids, are demonstrated to be thermodynamically consistent as a natural mathematical derived result. By using the method of Lagrangian multipliers, the natural and revised balance equations of physical laws are combined with the entropy inequality. By following the concepts of rational thermodynamics and continuum mechanics, the no-slip boundary conditions on the interfaces between isotropic viscous thermoelastic fluids with rigid bodies and isotropic linear thermoelastic solids are derived as a natural mathematical consequence. The results show that the no-slip boundary conditions need not be assumed a pirori, instead, they are simply direct mathematical derived results.

    Abstract i 摘要 ii 誌謝 iii Contents iv List of figures vi List of symbols vii 1 Introduction 1 1.1 Fluid-structure interactions 1 1.2 Literature survey 3 1.3 Motivations and expective results 5 2 Mathematical approaches 6 2.1 Material properties 6 2.1.1 Isotropic viscous thermoelastic fluids 6 2.1.2 Isotropic linear thermoelastic solids 7 2.1.3 Interfaces between isotropic viscous thermoelastic fluids and isotropic linear thermoelastic solids 8 2.1.4 Balance equations between the present and reference configurations 9 2.2 Entropy and the second law of thermodynamics 12 2.2.1 A briefly outline 12 2.2.2 Classical definitions 13 2.2.3 Boltzmann’s entropy representation 13 2.3 Entropy in continuum 21 2.3.1 The entropy principles 21 2.3.2 The Coleman-Noll approach 22 2.3.3 The Müller-Liu approach 24 3 Mathematical analyses for isotropic viscous thermoelastic fluids with rigid bodies 28 3.1 Entropy inequality in Müller-Liu approach 28 3.2 Analysis of the entropy inequality 30 4 Mathematical analyses for isotropic viscous thermoelastic fluids with isotropic linear thermoelastic solids 38 4.1 Entropy inequality in the fluids 38 4.2 Analyses of the fluids 40 4.3 Entropy inequality in the solids 49 4.4 Analyses of the solids 50 5 Conclusions and discussions 57 Reference 59

    [1] Sigrist, J. F. (2015). Fluid-structure interaction : an introduction to finite element coupling, John Wiley & Sons Ltd, France.
    [2] Xing, J. T. (2019). Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods, and Applications, Higher Education Press.
    [3] Parameshwarana, R., Dhulipallaa, S. J. and Yendluria, D. R. (2016). "Fluid-structure
    interactions and flow induced vibrations: A review”. Procedia Engineering, 144, 1286-1293.
    [4] Bisplinghoff, R. L., Ashley, H. and Halfman, R. L. (1955). Aeroelasticity, Addison-Wesley Publishing Company.
    [5] Glück, M., Breuer, M., Durst, F., Halfmann, A., and Rank, E. (2001). “Computation of fluid–structure interaction on lightweight structures”. Journal of Wind Engineering and Industrial Aerodynamics, 89, 1351-1368.
    [6] A tale of three Bridge - 1940. Retrieved from https://www.wsdot.wa.gov/TNBhistory/tale-of-three-bridges-1940.htm (June 25th, 2022).
    [7] Elgohary, M. O. and Attia, W. A. (2017). "Bridge Pylons-modeling and Design under CFD Analysis". Journal of Al Azhar University Engineering Sector, 12(45), 1285-1294.
    [8] Yin, M., Luo, X. Y., Wang, T. J. and Watton, P. N. (2010). "Effects of flow vortex on a chorded mitral valve in the left ventricle". Int. J. Numer. Meth. Biomed. Engng., 26, 381-404.
    [9] Boujena, S., Kafi, O. and El Khatib, N. (2014). "A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery". Math. Model. Nat. Phenom., 9(6), 46-68.
    [10] Pirnar, J., Dolenc-Grošelj, L., Fajdiga, I. and Žun, I. (2015). "Computational fluidstructure interaction simulation of airflow in the human upper airway". Journal of Biomechanics, 48, 3685-3691.
    [11] Du, Q., Gunzburger, M. D., Hou, L. S. and Lee, J. (2003). "Analysis of a Linear Fluid-structure Interaction Problem". DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 9(3), 633-650.
    [12] Kukavica, I., Tuffaha, A. and Ziane, M. (2010). “Strong Solutions for a Fluid Structure Interaction System”. Advances in Differential Equations, 15(3-4), 231-254.
    [13] Hou, G., Wang, J. and Layton, A. (2012). “NumericalMethods for Fluid-Structure Interaction— A Review”. Commun. Comput. Phys., 12(2), 337-377.
    [14] Gomes, J. P., Yigit, S., Lienhart, H. and Schäfer, M. (2011). “Experimental and numerical study on a laminar fluid–structure interaction reference test case”. Journal of Fluids and Structures, 27, 43-61.
    [15] Nayer, G. D., Kalmbach, A., Breuer, M., Sicklinger, S., Wüchner, R. (2014). “Flow past a cylinder with a flexible splitter plate: A complementary experimental–numerical investigation and a new FSI test case (FSI-PfS-1a)”. Computers & Fluids, 99, 18-43.
    [16] Blom, F. J. (1998). “A monolithical fluid-structure interaction algorithm applied to the piston problem”. Comput. Methods Appl. Mech. Engrg., 167, 369-391.
    [17] Michler, C., Hulshoff, S. J., van Brummelen, E. H., de Borst, R. (2004). “A monolithic approach to fluid–structure interaction”. Computers & Fluids, 33, 839-848.
    [18] Ryzhakov, P. B., Rossi, R., Idelsohn, S. R., Oñate, E. (2010). “A monolithic Lagrangian approach for fluid–structure interaction problems”. Comput Mech, 46, 883-899.
    [19] Richter, T. (2017). Fluid-structure Interactions: Models, Analysis and Finite Elements, Springer International Publishing, Germany.
    [20] 粘浩,「風引致結構共振:數值模擬與風洞實驗」,碩士論文,國立成功大學,2018。
    [21] 陳敬函,「高樓建築柔性氣彈模型振動台試驗與風洞試驗之參數識別」,碩士論文,國立成功大學,2018。
    [22] Bai, Y., Sun, D. and Lin, J. (2010). “Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES”. Computers & Fluids, 39, 1549-1561.
    [23] Wei, Z., Liu, Z. and He, F. (2023). “Reduced-Order Model Based on Volterra Series for Aerodynamics of the Bridge Deck Section and Flutter Critical Wind Speed Prediction”. Applied Sciences, 13(6), 3486.
    [24] Wijesooriya, K., Mohotti, D., Amin, A. and Chauhan, K. (2021). “Comparison between an uncoupled one-way and two-way fluid structure interaction simulation on a super-tall slender structure”. Engineering Structures, 229, 111636.
    [25] Gilmanov, A., Le, T. B. and Sotiropoulos, F. (2015). “A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains”. Journal of Computational Physics, 300, pp. 814-843.
    [26] Zhu, Q., Wang, X., Demartino, C. and Yan, J. (2023). “Revealing aeroelastic effects on low-rise roof structures in turbulent winds via isogeometric fluid–structure interaction”. Computational Mechanics, https://doi.org/10.1007/s00466-023-02341-8.
    [27] Tijsseling, A. S. (1996). “Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review”. Journal of Fluids and Structures, 10, 109-146.
    [28] Rebouillat, S. and Liksonov, D. (2009). “Fluid–Structure Interaction in Partially Filled Liquid Containers: A Comparative Review of Numerical Approaches”. Computers & Fluids , 39, 739-746.
    [29] Bazilevs, Y., Korobenko, A., Deng, X. and Yan, J. (2015). “ Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines ”. Int. J. Numer. Meth. Engng, 102, pp. 766-783.
    [30] Le, T. B. and Sotiropoulos, F. (2013). “Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle”. Journal of Computational Physics, 244, 41-62.
    [31] van Loon, R., Anderson, P. D., de Hart, J. and Baaijens, F. P. T. (2004). “A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves”. Int. J. Numer. Meth. Fluids, 46, 533-544.
    [32] van Loon, R., Anderson, P. D., Baaijens, F. P. T. and van de Vosse, F. N. (2005). “A three-dimensional fluid-structure interaction method for heart valve modelling”. Comptes Rendus M´ecanique, 333(12), 856-866.
    [33] Bazilevs, Y., Hsu, M.-C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R. and Isaksen, J. G. (2010). “A fully-coupled fluid-structure interaction simulation of cerebral aneurysms”. Comput Mech, 46, 3-16.
    [34] De Hart, J., Peters, G. W. M., Schreurs, P. J. G. and Baaijens, F. P. T. (2010). “A two-dimensional fluid-structure interaction model of the aortic value”. Journal of Biomechanics, 33, 1079-1088.
    [35] Chouly, F., Van Hirtum, A., Lagrée, P.-Y., Pelorson, X. and Payan, Y. (2008). “Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid–structure interaction”. Journal of Fluids and Structures, 24, 250-269.
    [36] Faizal, W. M., Ghazali, N. N. N., Badruddin, I.A., Zainon, M. Z., Yazid, A. A., Ali, M. A. B., Khor, C. Y. and Ibrahim, N. B. (2019). “A review of fluid-structure interaction simulation for patients with sleep related breathing disorders with obstructive sleep”. Computer Methods and Programs in Biomedicine, 180, 105036.
    [37] Faizal, W. M., Ghazali, N. N. N., Khor, C. Y., Badruddin, I.A., Zainon, M. Z., Yazid, A. A., Ibrahim, N. B. and Razi, R. M. (2019). “Computational fluid dynamics modelling of human upper airway: A review”. Computer Methods and Programs in Biomedicine, 196, 105627.
    [38] Le, T. B., Moghaddam, M. G., Woodson, B. T. and Garcia, G. J. M. (2008). “Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid-structure interaction simulations and experiments”. Physiol Rep., 7(10), e14099.
    [39] Augier, B., Yan, J., Korobenko, A., Czarnowski, J., Ketterman, G. and Bazilevs, Y. (2015). “Experimental and numerical FSI study of compliant hydrofoils”. Comput Mech, 55, 1079-1090.
    [40] Dahmane, M., Boutchicha, D. and Adjlout, L. (2016). “One-way fluid structure interaction of pipe under flow with different boundary conditions”. MECHANIKA, 22(6), 495-503.
    [41] Li, Q. S. M.ASCE, Yang, K. and Zhang, L. (2003). “Analytical Solution for Fluid-Structure Interaction in Liquid-Filled Pipes Subjected to Impact-Induced Water Hammer”. JOURNAL OF ENGINEERING MECHANICS, 129(12), 1408-1417.
    [42] Heinsbroek, A. G. T. J. (1997). “Fluid-structure interaction in non-rigid pipeline systems”. Nuclear Engineering and Design, 172, 123-135.
    [43] Chen, C., Ma, M., Jin, K., Liu, J. Z., Shen, L., Zheng, Q. and Xu, Z. (2011). “Nanoscale fluid-structure interaction: Flow resistance and energy transfer between water and carbon nanotubes”. PHYSICAL REVIEW E, 84, 046314.
    [44] Mirramezani, M. and Mirdamadi, H. R. (2012). “Effects of nonlocal elasticity and Knudsen number on fluid-structure interaction in carbon nanotube conveying fluid”. Physica E, 44, 2005-2015.
    [45] Khosravian, N. and Rafii-Tabar, H. (2007). “Computational modelling of the flow of viscous fluids in carbon nanotubes”. J. Phys. D: Appl. Phys., 40, 7046-7052.
    [46] Rashidi, V., Mirdamadi, H. R. and Shirani, E. (2012). “A novel model for vibrations of nanotubes conveying nanoflow”. Computational Materials Science, 51, 347-352.
    [47] Gursul, I. (2004). “Vortex flows on UAVs: Issues and challenges”. THE AERONAUTICAL JOURNAL, 108(1090), 597-610.
    [48] Mueller, T. J. and DeLaurier, J. D. (2003). “AERODYNAMICS OF SMALL VEHICLES”. Annu. Rev. Fluid Mech., 35, 89-111.
    [49] Gordnier, R. E. and Melville, R. B. (2000). “Transonic Flutter Simulations Using an Implicit Aeroelastic Solver”. JOURNAL OF AIRCRAFT, 37(5), 872-879.
    [50] Kamakoti, R. and Shyy, W. (2004). “Fluid-structure interaction for aeroelastic applications”. Progress in Aerospace Sciences, 40, 535-558.
    [51] Gursul, I., Cleaver, D. J. and Wang, Z. (2014). “Control of low Reynolds number flows by means of fluid-structure interactions”. Progress in Aerospace Sciences, 64, 17-55.
    [52] van Rij, J., Harman, T. and Ameel, T. (2012). “Slip flow fluid-structure-interaction”. International Journal of Thermal Sciences, 58, 9-19.
    [53] Fang, C. (2019). An Introduction to Fluid Mechanics, Springer-Verlag, Berlin Heidelberg.
    [54] Hutter, K. and Jöhnk, K. (2004). Continuum Methods of Physical Modeling, Springer-Verlag, Berlin Heidelberg.
    [55] Martinec, Z. (2019). Principles of Continuum Mechanics, Springer Nature, Switzerland.
    [56] Liu, I-S. (2002). Continuum Mechanics, Springer-Verlag, Berlin Heidelberg.
    [57] Van Ness, H. C. (1983). Understanding Thermodynamics, Dover Publications, Inc, New York.
    [58] Zemansky M. W. and Dittman, R. H. (1997). Heat and Thermodynamics, The McGraw-Hill Companies, Inc.
    [59] Sonntag, R. E., Borgnakke, C. and Van Wylen, G. J. (2003). Fundamentals of Thermodynamics, John Wiley & Sons, Inc.
    [60] Fang, C. (2007). “A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material”. Continuum Mech. Thermodyn., 19, 441–455.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE