簡易檢索 / 詳目顯示

研究生: 林哲聖
Lin, Zhe-Sheng
論文名稱: 微分再生核近似法於二維不可壓縮流場之分析
指導教授: 王永明
Wang, Yong-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 無元素法微分再生核近似法不可壓縮流場計算流體力學
外文關鍵詞: Newton-Raphson Method, CFD, meshless method, DRKM
相關次數: 點閱:147下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文應用微分再生核近似法(Differential Reproducing Kernel Approximation, DRKM)分析二維穩態不可壓縮流場的問題,藉以驗證DRKM於計算流體力學以及求解非線性偏微方程式的適用性與可行性。
    文中除了使用流函數-渦度法(Stream function-Vorticity formulation)解方形穴室流問題外,並建立以Newton-Raphson Method處理原始變數方程(primitive-variable formulation)之求解流程,藉以分析Couette flow、兩平行板擠壓流以及入口渠流等問題,同時探討不同基底階數與鄰近點數其近似效果之差異。
      由數值算例的結果顯示,以DRKM搭配Newton-Raphson Method分析二維不可壓縮流問題可以得到不錯而合理的近似結果,適當的不均勻佈點與較多的佈點數可以加快收斂速度,提高解的精度。

    none

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 本文架構 4 第二章 微分再生核近似理論 6 2.1 離散的再生核近似 6 2.2 再生核形狀函數的微分 8 2.3 加權函數之選取及支撐半徑的求法 11 第三章 二維穩態不可壓縮流問題 14 3.1 二維不可壓縮流體之控制方程式 14 3.1.1 原始變數法 14 3.1.2 無因次化 16 3.1.3 流函數-渦度法 17 3.2 微分再生核解法與求解流程 18 3.2.1 流函數-渦度法求解流程 18 3.2.2 Newton-Raphson method求解原始變數方程組 20 第四章 數值算例 24 4.1 Couette flow 24 4.2 兩平行板擠壓流 25 4.3 入口渠流 27 4.4 突擴斷面之入口渠流 29 4.5 方形穴室流 30 第五章 結論與建議 32 5.1 結論 32 5.2 建議 33 參考文獻 68

    Atkinson, B., Brocklebank M.P., Card, C.H. and Smith J.M.: Low Reynolds number developing flows., AIChE J., vol. 15, no. 4, pp.548- 553 (1969)

    Bodoia, J.R. and Osterle, J.F.: Finite difference analysis of plane Poiseuille
    and Couette flow developments. Appl. Sci. Res., 10, pp.265-276 (1961)

    Burggraf, O.R.: Analytical and numerical studies of the structure of steady
    separated flows. J. Fluid Mech., 24, part 1, pp.113-151 (1966)

    Belytschko, T., Gu, L. and Lu, Y.Y.: Fracture and crack growth by element-
    free Galerkin methods., Mode. Simul. Mater. Sci. Engrg. 2, pp.519-534 (1994)

    Chen, R-Y.: Flow in the entrance region at low Reynolds numbers., J. Fluids
    Eng., vol. 95, pp.153-158 (1973)

    Durst, F., Melling, A. and Whitelaw, J.H.: Low Reynolds number flow over
    a plane symmetric sudden expansion. J. Fluid Mech., 64, part 1, pp.111-128 (1974)

    Darbandi, M. and Schneider G.E.: Numerical study of the flow behavior in the uniform velocity entry flow problem., Numerical Heat Transfer, Part A, 34, pp.479-494 (1998)

    Farouk, B. and Fusegi, T.: Coupled solution of the vorticity-velocity
    formulation of the incompressible Navier-Stokes equations., International Journal for Numerical Methods in Fluids, 5, n 12, pp.1017-1034 (1985)

    Langhaar, H.: Steady flow in the transition length of a straight tube. J. Appl.
    Mech., 9,A, pp.55-58 (1942)

    Lucy, L.B.: A numerical approach to the testing of the fission hypothesis., The Astron. J., 8, pp.1013-1024 (1977)

    Lancaster, P. and Salkauskas, K.: Surfaces generated by moving least squares
    method., Mathematics of Computation., 37, pp.141-158 (1981)

    Liu, W.K., Jun, S. and Zhang, Y.F.: Reproducing kernel particle methods.,
    Int. J. Numer. Methods Engrg., 20, pp.1081-1106 (1995)

    Miller, J.J. H. and Wang, S.: An exponentially fitted finite volume method
    for the numerical solution of 2D unsteady incompressible flow programs., J. Comput. Phys., 115, pp.56-64 (1994)

    Narang, B.S. and Krishnamoorthy, G.: Laminar flow in entrance region of parallel plates., J. Appl. Mech., vol. 43, pp.186-188 (1976)

    Nayroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse elements., Comput. Mech., 10, pp.307-318 (1992)

    Peyret, R. and Taylor, T.D.: Computational Methods for Fluid Flow., Springer-Verlag (1983)

    Reddy, J.N.: An Introduction of the Finite Element Method., Second Edition. McGraw Hill (1993)

    Schiller, L.: Die entwicklung der laminaren eschwindigkeitsverteilung und
    ihre bedeutung für die zähugkeitsmessungen. ZAMM, 2, pp.96-106 (1922)

    Schlichting, H.: Laminare Kanaleinlaufstõmung. ZAMM, 14, pp.368-373 (1934)

    Schlichting, H.: Boundary-Layer Theory, Seventh Edition. McGraw Hill
    (1979)

    Thomadakis, M. and Leschziner, M.: A pressure-correction method for the
    solution of incompressible viscous flows on unstructured grids. International Journal for numerical methods in fluids, 22, pp.581-601 (1996)

    Van Dyke, M.: Entry flow in a channel. J. Fluid Mech., 44, pp.813-823 (1970)

    Wang, Y.L. and Longwell, P.A.: Laminar flow in the inlet section of parallel
    plates. Am. Inst. Chem. Eng. J., 10, no.3, pp.323-329 (1964)

    Wagner, G.J. and Liu, W.K.: Turbulence simulation and multiple scale subgrid
    models. Computational Mechanics, 25, pp.117-136 (2000)

    Young, D.L., Liu, Y.H. and Eldho, T.I.: Combined BEM-FEM model for the
    velocity-vorticity formulation of the Navier-Stokes equations in three dimensions., Engineering Analysis with Boundary Elements, 24, n 4, pp.307-316 (2000)

    盛若磐, “元素釋放法積分法則與權函數之改良”, 近代工程論壇(2000)論文集, 國立中央大學土木系, 2000

    下載圖示 校內:立即公開
    校外:2004-07-16公開
    QR CODE