| 研究生: |
張乃云 Chang, Nai-Yun |
|---|---|
| 論文名稱: |
銻摻雜與未摻雜同源結構氧化鋅與氧化鋅奈米線陣列熱電性質研究 Thermoelectric Properties of Sb-doped and Undoped Homologous In2O3(ZnO)m and ZnO Nanorods Arrays |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氧化鋅 、同源結構 、銻摻雜 、熱電性質 |
| 外文關鍵詞: | ZnO, homologous structure, Sb-doping, thermoelectric properties |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗針對同源結構氧化鋅、銻摻雜氧化鋅與銻摻雜同源結構氧化鋅的奈米線陣列熱電性質進行研究。實驗以水熱法製程銻摻雜氧化鋅奈米線陣列後,經銦離子水溶液處理後,經由高溫退火再生成同源結構氧化鋅奈米線陣列,實驗中以奈米線陣列製程單邊性質的熱電元件,並進行熱電性質的分析。實驗利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X射線光電子能譜儀(XPS)、紫外光可見光分光光譜儀(UV-vis)及陰極發光偵測儀(CL)進行材料基本性質的分析,再以自製熱電性質量測儀器測量電導率(electrical conductivity)與西貝克係數(Seebeck coefficient)。實驗結果顯示銻摻雜能使氧化鋅由本質的N型半導體轉換成外質的P型半導體,而同源結構則會使氧化鋅含有大量的深層能階(deep-level defects),這些深層能階會造成氧化鋅奈米線的電導率大幅度降低,並發現西貝克係數大幅度提升。此外,實驗中發現特定的銻摻雜比例能提供良好的熱電功率因子,而具有同源結構的氧化鋅奈米線陣列亦能擁有較佳的熱電轉換效率。
In our work, we compare the thermoelectric properties of several ZnO nanorods arrays, including Sb-doped ZnO, homologous In2O3(ZnO)m and Sb-doped homologous In2O3(ZnO)m. To form the Sb-doped homologous In2O3(ZnO)m nanorods arrays, Sb-doped ZnO nanorods arrays were first formed by hydrothermal process. Then, after dip into the indium ionic solution, samples are annealed at 1173K for one and half hours. Finally, we can get Sb-doped homologous In2O3(ZnO)m nanorods arrays. To see the microstructural characterization of the ZnO nanorods arrays, SEM, TEM are used. Then, we form the one-sided thermoelectric devices with ZnO nanorods arrays to measure the thermoelectric properties. Seebeck coefficient and electrical conductivity are measured by hand-made instruments. In our experimental results, it shows Sb-doping can effectively transform ZnO nanorods from intrinsic N-type semiconductor into extrinsic P-type semiconductor. Besides, homologous structure can largely enhance the Seebeck coefficient but restrain the electrical conductivity in the nanorods. Finally, combing Sb-doping and homologous structure, we can form Sb-doped homologous In2O3(ZnO)m nanorods arrays with good thermoelectric properties
[1] X. Zhang, and L.D.Zhao, “Thermoelectric materials: Energy conversion between heat and electricity”, Journal of Materiomics, 1, 92-105 (2015)
[2] L.Hicks, and M.Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys.Rev.B, 47, 24, 16631-16634 (1993)
[3] L.Hicks, and M.Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys.Rev.B, 47, 19, 12727-12731 (1993)
[4] R.Venkatasubramanian, “MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications”, Journal of Crystal Growth, 70, 1-4, 817-821 (1997)
[5] R.Venkatasubramanian, “Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures”, Phys.Rev.B, 61, 4, 3091-3097 (2000)
[6] B.Chavillon, L.Cario, A.Renaud, F.Tessier, F.Chevire, M.Boujtita, Y.Pellegrint, E.Blart, A.Smeigh, L.Hammarstorm, F.Odobe, and S.Jobic, “P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions”, J. Am. Chem. Soc., 134, 1, 464-470 (2011)
[7] K.K.Kim, H.S.Kim, D.K.Hwang, J.H.Lim, and S.J.Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”, Appl. Phys. Lett. 83, 63 (2003)
[8] Y.R.Ryu, and T.S.Lee, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett., 83, 87 (2003)
[9] H.S.Kang, B.D.Ahn, J.H.Kim, G.H.Kim, S.H.Lim, H.W.Chang, and S.Y.Lee, “Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant”, Appl. Phys. Lett. 88, 202108 (2006)
[10] J.C.Fan, K.M.Sreekanth, Z.Xie, S.L.Chang, and K.V.Rao, “p-Type ZnO materials: Theory, growth, properties and devices”, Progress in Materials Science 58, 874-985 (2013)
[11] S.C.Erwin, L.Zu, M.I.Haftel, A.L.Efros, and T.A.Kennedy, “Doping semiconductor nanocrystals”, Nature, 436, 91–94 (2005)
[12] F.Wang, J.H.Seo, D.Bayerl, J.Shi, H.Mi, Z.Ma, D.Zhao,Y.Shuai, W.Zhou, and X.Wang, “An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires”, Nanotechnology, 22, 225602 (2011)
[13] S.Limpijumnong, S.B.Zhang, S.H.Wei, and C.H. Park, “Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic or Antimony-Doped p-Type Zinc Oxide”, Phys. Rev. Lett., 92,155504 (2004)
[14] D.C.Look, and D.C. Reynolds, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., 81, 1830 (2002)
[15] H.Kasper, “Neuartige Phasen mit wurtzitähnlichen Strukturen im System ZnOIn2O3”, Z.Anorg.Allg.Chem., 349, 113 (1967)
[16] N.Kimizuka, M.Isobe, and M.Nakamura, “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System”, J.Solid State Chem., 116,170 (1995)
[17] M.Isobe, N.Kimizuka, M.Nakamura, and T.Mohri, “Structures of LuFeO3(ZnO)m (m =1, 4, 5 and 6)”, Acta Cryatallogr.Sect., 50, 332 (1994)
[18] J.L.F.Da Silva, Y.Yan, and S.H.Wei, “Rules of Structure Formation for the InMO3(ZnO)m Homologous Compounds”, PhysRevLett., 100, 255501 (2008)
[19] Y.Yan, J.L.F.Da Silva, S.H.Wei, and M.Al-Jassim, “Atomic structure of In2O3-ZnO systems”, Appl.Phys.Lett., 90, 261904 (2007)
[20] C.W.Na, S.Y.Bae, and J.Park, “Short-Period Superlattice Structure of Sn-Doped In2O3(ZnO)4 and In2O3(ZnO)5 Nanowires”, J.Phys.Chem.B, 109,12785-12790 (2005)
[21] S.C.Andrews, M.A.Fardy, M.C.Moore, S.Aloni, M.Zhang, V.Radmilovic, and P.Yang, “Atomic-level control of the thermoelectric properties in polytypoid nanowires”, Chem.Sci., 2, 706 (2011)
[22] Y.Guo, B.V.Bilzen, J.P.Locquet, and J.W.Seo, “Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor”, Nanotechnology, 26, 495601 (2015)
[23] G.Christophe, O.Henni, Z.Knud, S.Wolfgang, M.Eckhard, “Thermodynamics and thermoelectricity”, in G.Christophe, “Continuum Theory and Modeling of Thermoelectric Elements”, New York, USA: Wiley-VCH. pp. 2–3 (2016).
[24] T.J.Seebeck, "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz", Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 265–373. (1822)
[25] J.C.A.Peltier, "Nouvelles expériences sur la caloricité des courants électrique", Annales de Chimie et de Physique, 56, 371–386 (1834)
[26] Northwestern Materials Science and Engineering, “Thermoelectrics”, Northwestern University
[27] M.I.Feforov, and V.K.Zaitsev, “Thermoelectric Handbook: Macro to Nano”, edited by D.M.Rowe, CRC, Boca Raton, FL (2006)
[28] V.A.Kutasov, L.N.Lukyanova, and M.V.Vedernikov, “Thermoelectric Handbook: Macro to Nano”, edited by D.M.Rowe, CRC, Boca Raton, FL (2006)
[29] T.C.Harman, D.L.Spears, and M.J.Manfra, “High thermoelectric figures of merit in PbTe quantum wells”, J.Electron.Mater., 25, 1121 (1996)
[30] J.J.Gong, A.J.Hong, J.Shuai, L.Li, Z.B.Yan, Z.F.Ren, and J.M.Liu, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Phys.Chem.Chem.Phys., 18,16566 (2016)
[31] P.J.Price, “Ambipolar thermal diffusion of electrons and holes in semiconductors”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 46, 1252 (1955)
[32] J.Xi, M.Long, L.Tang, D.Wang, and Z.Shuai, “First-principles prediction of charge mobility in carbon and organic nanomaterials”, Nanoscale, 4, 4348-4369 (2012)
[33] C.L.Tien, A.Majumdar, andF.M.Gerner, “Microscale energy transfer”, Taylor&Francis, Washington D.C. (1998)
[34] J.Dong, O.F.Sankey, and C.W.Myles, “Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors”, Phys.Rev.Lett., 86, 4350-4353 (2001)
[35] C.J.Glassbrenner, and G.A.Slack, “Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point”, Phys.Rev., 134, A1058-A1069 (1964)
[36] W.Kim, “Strategies for engineering phonon transport in thermoelectric”, J.Mater.Chem.C., 3, 10336-10348 (2015)
[37] C.Kittel, “Introduction to Solid State Physics”, John Wiley&Sons. Inc. (2005)
[38] D.T.Morelli, V.Jovovic, and J.P.Heremans, “Intrinsically Minimal Thermal Conductivity in Cubic I−V−VI2 Semiconductors”, Phys.Rev.Lett., 101, 035901 (2008)
[39] J.M.Ziman, “Electrons and Phonons: The Theory of Transport Phenomena in Solids”, Oxford University Press, Oxford (2001)
[40] E.J.Skoug, and D.T.Morelli, “Role of Lone-Pair Electrons in Producing Minimum Thermal Conductivity in Nitrogen-Group Chalcogenide Compounds”, Phys.Rev.Lett., 107, 235901 (2011)
[41] M.S.Abrahams, R.Braunstein, and F.D.Rosi, “Thermal, electrical and optical properties of (In,Ga)as alloys”, J.Phys.Chem.Solids 10, 204-210 (1959)
[42] J.Tang, H.T.Wang, D.H.Lee, M.Fardy, Z.Huo, T.P.Russell, and P.Yang, “Holey Silicon as an Efficient Thermoelectric Material”, Nano Lett., 10, 4279-4283 (2010)
[43] Y.S.Ju, and K.E.Goodson, “Phonon scattering in silicon films with thickness of order 100 nm”, Appl.Phys.Lett., 74, 3005-3007 (1999)
[44] G.Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices”, Phys.Rev. B, 57(23) (1998)
[45] G.Chen, and M.Neagu, “Thermal conductivity and heat transfer in superlattices”, Appl.Phys.Lett., 71, 2761 (1997)
[46] W.S.Capinski, and H.J.Maris, “Thermal conductivity of GaAs/AlAs superlattices”, Physica B, 219, 699 (1996)
[47] G.Chen, “Micro-Electro-Mechanical Systems”, ASME, New Yok (1996)
[48] H.Kim, Y.H.Park, I.Kim, J.Kim, H.J.Choi, and W.Kim, “Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−x Ge x nanowires”, Appl.Phys.A:Mater.Sci.Process, 104, 23-28 (2011)
[49] R.Chen, A.I.Hochbaum, P.Murphy, J.Moore, P.D.Yang, and A.Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys.Rev.Lett., 101, 105501 (2008)
[50] A.I.Hochbaum, R.Chen, R.D.Delgado, W.Liang, E.C.Garnett, M.Najarian, A.Majumdar, and P.Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature, 4, 51 (2008)
[51] J.Maire, R.Anufriev, and M.Nomura, “Ballistic thermal transport in silicon
nanowires”, Scientic Report, 7, 41794 (2017)
[52] K.T.Regner, D.P.Sellan, Z.Su, C.H.Amon, A.J.H.McGaughey, and J.A.Malen, “Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance”, Nat.Commun., 4,1640 (2013)
[53] S.B.Soffer, “Statistic model for the size effect in electrical conduction”, J.Appl.Phys, 38, 1710 (1967)
[54] J.Briscoe, D.E.Gallardo, and S.Dunn, “In situ antimony doping of solution-grown ZnO nanorods”, Chem.Comm., 10, 1273-1275 (2009)
[55] Y.Tak, and K.Yong, “Controlled Growth of Well-aligned ZnO Nanorod Array Using a Novel Solution Methos”, J.Phys.Chem.B, 109, 19263-19269 (2005)
[56] Y.Wei, W.Wu, R.Guo, D.Yuan, S.Das, and Z.L.Wang, “Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays”, Nano Lett., 10, 3414-3419 (2010)
[57] J.Garling, W.Assenmacher, H.Schmid, P.Longo, and W.Mader, “Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation”, Journal of Solid State Chemistry, 258, 809-817 (2018)
[58] Y.Zhang1, X.Song, J.Zheng1, H. Liu, X.Li, and L.You, “Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties”, Nanotechnology, 17, 1916-1921 (2006)
[59] S.Bang, S.Lee, Y.Ko, J.Park, S.Shin, H.Seo, and H.Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition”, Nanoscale Res.Lett., 7, 290 (2012)
[60] M.K.Puchert, P.Y.Timbrell, and R.N.Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films”, Journal of Vacuum Science & Technology A, 14, 4, 2220-2379 (1996)
[61] Z.Zhang, K.Y.Liu, C.Jin, X.Liang, Q.Chen, and L.M.Peng, “Quantitative Analyssis of Current-Voltage Characteristic of Semiconducting Nanowires: Decoupling of Contact Effect”, Adv.Func.Mater., 17, 2478-2489 (2007)
[62] T.Aoki, Y. Shimizu, A.Miyake, A.Nakamura, Y.Nakanishi, and Y.Hatanaka, “p‐Type ZnO Layer Formation by Excimer Laser Doping”, Phys.Status Solidi (b), 229, 911 (2002)
[63] K.Nomura, T.Kamiya, H.Ohta, K.Ueda, M.Hirano, and H.Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGa3(ZnO)5 films”, Appl.Phys. Lett., 85, 11 (2004)
[64] H.W.Yeon, S.M.Lim, J.K.Jung, H.Yoo, Y.J.Lee, H.Y.Kang, Y.J.Park, M.Kim, and Y.C.Joo, “Structural-relaxation-driven electron doping of amorphous oxide semiconductors by increasing the concentration of oxygen vacancies in shallow-donor states”, NPG Asia Materials, 8, e250 (2016)
[65] A.S.Hassanien, and A.A.Akl, “Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSex thin films”, Journal of Alloys and Compounds, 648, 280-290 (2008)
[66] M.Willander, O.Nur, J.R.Sadaf, M.I.Qadir, S.Zaman, A.Zainelabdin, N.Bano, and I.Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices”, Materials, 3, 2643-2667 (2010)
[67] B.Lin, Z.Fu, and Y.Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl.Phys. Lett., 79, 943 (2001)
[68] A.B.Djurisic, A.M.C.Ng, and X.Y.Chen, “ZnO nanostructures for optoelectronics-material properties and device applications”, Progress in Quantum Electronics, 34, 191–259 (2010)
[69] S.Vempati, JMitra, and P.Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore”, Nanoscale Res.Lett., 7, 470 (2012)
[70] B.Cao, W.Cai, and H.Zeng, “Temperature-dependent shifts of three emission bands for nanoneedle array”, Appl.Phys.Lett., 88, 161101 (2006)
[71] C.H.Ahn, Y.Y.Kim, D.C.Kim, S.K.Mohanta, and H.K.Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods”, J.Appl.Phys, 105, 013592 (2009)
[72] T.Tomita, K.Yamashita, Y.Hayafuji, and H.Adachi, “The origin of n-type conductivity in undoped In2O3”, Appl.Phys.Lett., 87, 051911 (2005)
[73] B.K.Mayer, “Landolt-Börnstein - Group III Condensed Matter”, Springer–Verlag (2000)
[74] B.V.Zeghbroeck, “Principles of Semiconductor Devices”, Prentice Hall (2010)
[75] K.Alfaramawi, “Electric field dependence of the electron mobility in bulk wurtzite ZnO”, Bull.Mater.Sci, 37, 7 (2014)
[76] D.A.Neamen, “Semiconductor Physics and Devices: Basic Principle”, Mc Graw Hill Education (2012)
[77] U.Godavarti, V.D.Mote, and M.Dasari, “Role of cobalt doping on the electrical conductivity of ZnO nanoparticles”, Journal of Asian Ceramic Societies, 5, 391-396 (2017)
[78] J.Singleton, “Band Theory and Electronic Properties of Solids”, Oxford University Press (2001)
[79] S.M.Sze, K.K.Ng, “Physics of Semiconductor Devices”, John Wiley & Sons (2007)
[80] P.Swaminathan, “Semiconductor Materials, Devices, and Fabrication”, John Wiley & Sons,Wiley Interscience (2017)
[81] K.I.Hagemark, and L.C.Chacka, “Electrical transport properties of Zn doped ZnO”, Journal of Solid State Physics, 15, 3, 261-270 (1975)
[82] J.Han, A.M.R.Senos, P.Q.Mantas, and W.Cao, “Dielectric relaxation of shallow donor in polycrystalline Mn-doped ZnO”, J.Appl.Phys., 93, 7 (2003)
[83] M.S.R.Rao, and T.Okada, “ZnO Nanocryatals and Allied Material”, Springer India (2014)
[84] J.M.Qin, B.Yao, Y.Yan, J.Y.Zhang, X.P.Jia, Z.Z.Zhang, B.H.Li, C.X.Shan, and D.Z.Shen, “Formation of stable and reproducible low resistivity and high carrier concentration pp-type ZnO doped at high pressure with Sb”, Appl.Phys.Lett, 95, 022101 (2009)
[85] O. L.Tirpak, W.V.Schoenfeld, L.Chernyak, F.X.Xiu, J.L.Liu, S.Jang, F.Ren, S.J.Pearton, A.Osinsky, and P.Chow, “Carrier concentration dependence of acceptor activation energy in p-type ZnO”, Appl.Phys.Lett., 88, 202110 (2006)
[86] K.Igamberdive, S.Yuldashev, H.D.Cho, T.W.Kang, and A.Shashkov, “Thermal Conductivity of ZnO Nanowires Embedded in Poly(methyl methacrylate) Matrix”, Appl.Phys.Express, 4, 015001 (2011)
[87] M.Kosir, M.Podlogar, N.Daneu, A.Recnik, E.Guilmeau, and S.Bernik, “Phase Formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics”, J.Eur.Ceram.Soc., 37, 2833-2842 (2017)
[88] X.Wu, J.Lee, V.Varshney, J.L.Wohlwend, A.K.Roy, and T.Luo, “Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride”, Scientific Reports, 6,22504 (2016)
[89] N.H.T.Ngyuen, T.H.Ngyuen, Y.R.Liu, M.Aminzare, A.T.T.Pham, S.Cho, D.P.Wong, K.H.Chen, T.Seetawan, N.K.Pham, H.K.T.Ta, V.C.Tran, and T.B.Phan, “Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films”, Appl.Mater.Interfaces, 8, 33916-33923 (2016)
[90] J.H.Kim, D.K.Seo, C.H.Ahn, S.W.Shin, H.H.Cho, and H.K.Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties”, J.Mater.Chem, 22, 16312 (2012)
[91] L.J.Cui, Z.H.Ge,and P.QinJ.Feng, “Enhanced thermoelectric properties of In2O3(ZnO)5 intrinsic superlattice ceramics by optimizing the sintering process”, RSC Adv., 49883-49889 (2017)
[92] Y.Yang, K.C.Pradel, Q.Jing, J.M.Wu, F.Zhang, Y.Zhou, Y.Zhang, and Z.L.Wang, “Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/ Nanobelts”, ACS Nano, 6, 8, 6984-6989 (2012)
[93] G.Li, L.Xiao, S.Liu, H.Wang, Y.Gao,and Q.Wang, “Effect of nanowires in microporous structures on the thermoelectric properties of oxidized Sb-doped ZnO film”, J.Eur.Ceram.Soi, 38, 1608-1613 (2018)
校內:2021-08-14公開