簡易檢索 / 詳目顯示

研究生: 張乃云
Chang, Nai-Yun
論文名稱: 銻摻雜與未摻雜同源結構氧化鋅與氧化鋅奈米線陣列熱電性質研究
Thermoelectric Properties of Sb-doped and Undoped Homologous In2O3(ZnO)m and ZnO Nanorods Arrays
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 氧化鋅同源結構銻摻雜熱電性質
外文關鍵詞: ZnO, homologous structure, Sb-doping, thermoelectric properties
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗針對同源結構氧化鋅、銻摻雜氧化鋅與銻摻雜同源結構氧化鋅的奈米線陣列熱電性質進行研究。實驗以水熱法製程銻摻雜氧化鋅奈米線陣列後,經銦離子水溶液處理後,經由高溫退火再生成同源結構氧化鋅奈米線陣列,實驗中以奈米線陣列製程單邊性質的熱電元件,並進行熱電性質的分析。實驗利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X射線光電子能譜儀(XPS)、紫外光可見光分光光譜儀(UV-vis)及陰極發光偵測儀(CL)進行材料基本性質的分析,再以自製熱電性質量測儀器測量電導率(electrical conductivity)與西貝克係數(Seebeck coefficient)。實驗結果顯示銻摻雜能使氧化鋅由本質的N型半導體轉換成外質的P型半導體,而同源結構則會使氧化鋅含有大量的深層能階(deep-level defects),這些深層能階會造成氧化鋅奈米線的電導率大幅度降低,並發現西貝克係數大幅度提升。此外,實驗中發現特定的銻摻雜比例能提供良好的熱電功率因子,而具有同源結構的氧化鋅奈米線陣列亦能擁有較佳的熱電轉換效率。

    In our work, we compare the thermoelectric properties of several ZnO nanorods arrays, including Sb-doped ZnO, homologous In2O3(ZnO)m and Sb-doped homologous In2O3(ZnO)m. To form the Sb-doped homologous In2O3(ZnO)m nanorods arrays, Sb-doped ZnO nanorods arrays were first formed by hydrothermal process. Then, after dip into the indium ionic solution, samples are annealed at 1173K for one and half hours. Finally, we can get Sb-doped homologous In2O3(ZnO)m nanorods arrays. To see the microstructural characterization of the ZnO nanorods arrays, SEM, TEM are used. Then, we form the one-sided thermoelectric devices with ZnO nanorods arrays to measure the thermoelectric properties. Seebeck coefficient and electrical conductivity are measured by hand-made instruments. In our experimental results, it shows Sb-doping can effectively transform ZnO nanorods from intrinsic N-type semiconductor into extrinsic P-type semiconductor. Besides, homologous structure can largely enhance the Seebeck coefficient but restrain the electrical conductivity in the nanorods. Finally, combing Sb-doping and homologous structure, we can form Sb-doped homologous In2O3(ZnO)m nanorods arrays with good thermoelectric properties

    目錄 中文摘要 II Extended Abstract III 誌謝 XI 目錄 XII 圖目錄 XIV 表目錄 XIX 第一章 序論 1 1-1前言 1 1-2論文架構 3 第二章 文獻回顧 4 2-1 摻銻氧化鋅一維材料 4 2-2 同源氧化銦鋅一維材料 7 2-3熱電性質 11 2-4 Seebeck係數理論 13 2-5熱傳導係數理論 20 2-6 一維奈米線熱電性質 28 第三章 實驗步驟與分析儀器 32 3-1實驗流程 32 3-2氧化鋅奈米線成長 33 3-3熱電元件製作 35 3-4熱電性質量測 36 第四章 結果與討論 37 4-1表面形貌與元素分析 37 4-2結構分析 41 4-3價態分析 46 4-4載子濃度量測 49 4-5能帶與缺陷分析 53 4-6熱電元件電極 60 4-7電導率分析 62 4-8 Seebeck係數分析 69 4-9 Power Factor分析 73 4-10 Figure of Merit 75 第五章 結論 79 第六章 參考文獻 80

    [1] X. Zhang, and L.D.Zhao, “Thermoelectric materials: Energy conversion between heat and electricity”, Journal of Materiomics, 1, 92-105 (2015)
    [2] L.Hicks, and M.Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys.Rev.B, 47, 24, 16631-16634 (1993)
    [3] L.Hicks, and M.Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys.Rev.B, 47, 19, 12727-12731 (1993)
    [4] R.Venkatasubramanian, “MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications”, Journal of Crystal Growth, 70, 1-4, 817-821 (1997)
    [5] R.Venkatasubramanian, “Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures”, Phys.Rev.B, 61, 4, 3091-3097 (2000)
    [6] B.Chavillon, L.Cario, A.Renaud, F.Tessier, F.Chevire, M.Boujtita, Y.Pellegrint, E.Blart, A.Smeigh, L.Hammarstorm, F.Odobe, and S.Jobic, “P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions”, J. Am. Chem. Soc., 134, 1, 464-470 (2011)
    [7] K.K.Kim, H.S.Kim, D.K.Hwang, J.H.Lim, and S.J.Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”, Appl. Phys. Lett. 83, 63 (2003)
    [8] Y.R.Ryu, and T.S.Lee, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett., 83, 87 (2003)
    [9] H.S.Kang, B.D.Ahn, J.H.Kim, G.H.Kim, S.H.Lim, H.W.Chang, and S.Y.Lee, “Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant”, Appl. Phys. Lett. 88, 202108 (2006)
    [10] J.C.Fan, K.M.Sreekanth, Z.Xie, S.L.Chang, and K.V.Rao, “p-Type ZnO materials: Theory, growth, properties and devices”, Progress in Materials Science 58, 874-985 (2013)
    [11] S.C.Erwin, L.Zu, M.I.Haftel, A.L.Efros, and T.A.Kennedy, “Doping semiconductor nanocrystals”, Nature, 436, 91–94 (2005)
    [12] F.Wang, J.H.Seo, D.Bayerl, J.Shi, H.Mi, Z.Ma, D.Zhao,Y.Shuai, W.Zhou, and X.Wang, “An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires”, Nanotechnology, 22, 225602 (2011)

    [13] S.Limpijumnong, S.B.Zhang, S.H.Wei, and C.H. Park, “Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic or Antimony-Doped p-Type Zinc Oxide”, Phys. Rev. Lett., 92,155504 (2004)
    [14] D.C.Look, and D.C. Reynolds, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., 81, 1830 (2002)
    [15] H.Kasper, “Neuartige Phasen mit wurtzitähnlichen Strukturen im System ZnOIn2O3”, Z.Anorg.Allg.Chem., 349, 113 (1967)
    [16] N.Kimizuka, M.Isobe, and M.Nakamura, “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System”, J.Solid State Chem., 116,170 (1995)
    [17] M.Isobe, N.Kimizuka, M.Nakamura, and T.Mohri, “Structures of LuFeO3(ZnO)m (m =1, 4, 5 and 6)”, Acta Cryatallogr.Sect., 50, 332 (1994)
    [18] J.L.F.Da Silva, Y.Yan, and S.H.Wei, “Rules of Structure Formation for the InMO3(ZnO)m Homologous Compounds”, PhysRevLett., 100, 255501 (2008)
    [19] Y.Yan, J.L.F.Da Silva, S.H.Wei, and M.Al-Jassim, “Atomic structure of In2O3-ZnO systems”, Appl.Phys.Lett., 90, 261904 (2007)
    [20] C.W.Na, S.Y.Bae, and J.Park, “Short-Period Superlattice Structure of Sn-Doped In2O3(ZnO)4 and In2O3(ZnO)5 Nanowires”, J.Phys.Chem.B, 109,12785-12790 (2005)
    [21] S.C.Andrews, M.A.Fardy, M.C.Moore, S.Aloni, M.Zhang, V.Radmilovic, and P.Yang, “Atomic-level control of the thermoelectric properties in polytypoid nanowires”, Chem.Sci., 2, 706 (2011)
    [22] Y.Guo, B.V.Bilzen, J.P.Locquet, and J.W.Seo, “Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor”, Nanotechnology, 26, 495601 (2015)
    [23] G.Christophe, O.Henni, Z.Knud, S.Wolfgang, M.Eckhard, “Thermodynamics and thermoelectricity”, in G.Christophe, “Continuum Theory and Modeling of Thermoelectric Elements”, New York, USA: Wiley-VCH. pp. 2–3 (2016).
    [24] T.J.Seebeck, "Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz", Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 265–373. (1822)
    [25] J.C.A.Peltier, "Nouvelles expériences sur la caloricité des courants électrique", Annales de Chimie et de Physique, 56, 371–386 (1834)
    [26] Northwestern Materials Science and Engineering, “Thermoelectrics”, Northwestern University

    [27] M.I.Feforov, and V.K.Zaitsev, “Thermoelectric Handbook: Macro to Nano”, edited by D.M.Rowe, CRC, Boca Raton, FL (2006)
    [28] V.A.Kutasov, L.N.Lukyanova, and M.V.Vedernikov, “Thermoelectric Handbook: Macro to Nano”, edited by D.M.Rowe, CRC, Boca Raton, FL (2006)
    [29] T.C.Harman, D.L.Spears, and M.J.Manfra, “High thermoelectric figures of merit in PbTe quantum wells”, J.Electron.Mater., 25, 1121 (1996)
    [30] J.J.Gong, A.J.Hong, J.Shuai, L.Li, Z.B.Yan, Z.F.Ren, and J.M.Liu, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Phys.Chem.Chem.Phys., 18,16566 (2016)
    [31] P.J.Price, “Ambipolar thermal diffusion of electrons and holes in semiconductors”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 46, 1252 (1955)
    [32] J.Xi, M.Long, L.Tang, D.Wang, and Z.Shuai, “First-principles prediction of charge mobility in carbon and organic nanomaterials”, Nanoscale, 4, 4348-4369 (2012)
    [33] C.L.Tien, A.Majumdar, andF.M.Gerner, “Microscale energy transfer”, Taylor&Francis, Washington D.C. (1998)
    [34] J.Dong, O.F.Sankey, and C.W.Myles, “Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors”, Phys.Rev.Lett., 86, 4350-4353 (2001)
    [35] C.J.Glassbrenner, and G.A.Slack, “Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point”, Phys.Rev., 134, A1058-A1069 (1964)
    [36] W.Kim, “Strategies for engineering phonon transport in thermoelectric”, J.Mater.Chem.C., 3, 10336-10348 (2015)
    [37] C.Kittel, “Introduction to Solid State Physics”, John Wiley&Sons. Inc. (2005)
    [38] D.T.Morelli, V.Jovovic, and J.P.Heremans, “Intrinsically Minimal Thermal Conductivity in Cubic I−V−VI2 Semiconductors”, Phys.Rev.Lett., 101, 035901 (2008)
    [39] J.M.Ziman, “Electrons and Phonons: The Theory of Transport Phenomena in Solids”, Oxford University Press, Oxford (2001)
    [40] E.J.Skoug, and D.T.Morelli, “Role of Lone-Pair Electrons in Producing Minimum Thermal Conductivity in Nitrogen-Group Chalcogenide Compounds”, Phys.Rev.Lett., 107, 235901 (2011)
    [41] M.S.Abrahams, R.Braunstein, and F.D.Rosi, “Thermal, electrical and optical properties of (In,Ga)as alloys”, J.Phys.Chem.Solids 10, 204-210 (1959)
    [42] J.Tang, H.T.Wang, D.H.Lee, M.Fardy, Z.Huo, T.P.Russell, and P.Yang, “Holey Silicon as an Efficient Thermoelectric Material”, Nano Lett., 10, 4279-4283 (2010)
    [43] Y.S.Ju, and K.E.Goodson, “Phonon scattering in silicon films with thickness of order 100 nm”, Appl.Phys.Lett., 74, 3005-3007 (1999)
    [44] G.Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices”, Phys.Rev. B, 57(23) (1998)
    [45] G.Chen, and M.Neagu, “Thermal conductivity and heat transfer in superlattices”, Appl.Phys.Lett., 71, 2761 (1997)
    [46] W.S.Capinski, and H.J.Maris, “Thermal conductivity of GaAs/AlAs superlattices”, Physica B, 219, 699 (1996)
    [47] G.Chen, “Micro-Electro-Mechanical Systems”, ASME, New Yok (1996)
    [48] H.Kim, Y.H.Park, I.Kim, J.Kim, H.J.Choi, and W.Kim, “Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−x Ge x nanowires”, Appl.Phys.A:Mater.Sci.Process, 104, 23-28 (2011)
    [49] R.Chen, A.I.Hochbaum, P.Murphy, J.Moore, P.D.Yang, and A.Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys.Rev.Lett., 101, 105501 (2008)
    [50] A.I.Hochbaum, R.Chen, R.D.Delgado, W.Liang, E.C.Garnett, M.Najarian, A.Majumdar, and P.Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature, 4, 51 (2008)
    [51] J.Maire, R.Anufriev, and M.Nomura, “Ballistic thermal transport in silicon
    nanowires”, Scientic Report, 7, 41794 (2017)
    [52] K.T.Regner, D.P.Sellan, Z.Su, C.H.Amon, A.J.H.McGaughey, and J.A.Malen, “Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance”, Nat.Commun., 4,1640 (2013)
    [53] S.B.Soffer, “Statistic model for the size effect in electrical conduction”, J.Appl.Phys, 38, 1710 (1967)
    [54] J.Briscoe, D.E.Gallardo, and S.Dunn, “In situ antimony doping of solution-grown ZnO nanorods”, Chem.Comm., 10, 1273-1275 (2009)
    [55] Y.Tak, and K.Yong, “Controlled Growth of Well-aligned ZnO Nanorod Array Using a Novel Solution Methos”, J.Phys.Chem.B, 109, 19263-19269 (2005)
    [56] Y.Wei, W.Wu, R.Guo, D.Yuan, S.Das, and Z.L.Wang, “Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays”, Nano Lett., 10, 3414-3419 (2010)

    [57] J.Garling, W.Assenmacher, H.Schmid, P.Longo, and W.Mader, “Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation”, Journal of Solid State Chemistry, 258, 809-817 (2018)
    [58] Y.Zhang1, X.Song, J.Zheng1, H. Liu, X.Li, and L.You, “Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties”, Nanotechnology, 17, 1916-1921 (2006)
    [59] S.Bang, S.Lee, Y.Ko, J.Park, S.Shin, H.Seo, and H.Jeon, “Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition”, Nanoscale Res.Lett., 7, 290 (2012)
    [60] M.K.Puchert, P.Y.Timbrell, and R.N.Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films”, Journal of Vacuum Science & Technology A, 14, 4, 2220-2379 (1996)
    [61] Z.Zhang, K.Y.Liu, C.Jin, X.Liang, Q.Chen, and L.M.Peng, “Quantitative Analyssis of Current-Voltage Characteristic of Semiconducting Nanowires: Decoupling of Contact Effect”, Adv.Func.Mater., 17, 2478-2489 (2007)
    [62] T.Aoki, Y. Shimizu, A.Miyake, A.Nakamura, Y.Nakanishi, and Y.Hatanaka, “p‐Type ZnO Layer Formation by Excimer Laser Doping”, Phys.Status Solidi (b), 229, 911 (2002)
    [63] K.Nomura, T.Kamiya, H.Ohta, K.Ueda, M.Hirano, and H.Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGa3(ZnO)5 films”, Appl.Phys. Lett., 85, 11 (2004)
    [64] H.W.Yeon, S.M.Lim, J.K.Jung, H.Yoo, Y.J.Lee, H.Y.Kang, Y.J.Park, M.Kim, and Y.C.Joo, “Structural-relaxation-driven electron doping of amorphous oxide semiconductors by increasing the concentration of oxygen vacancies in shallow-donor states”, NPG Asia Materials, 8, e250 (2016)
    [65] A.S.Hassanien, and A.A.Akl, “Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50-xSex thin films”, Journal of Alloys and Compounds, 648, 280-290 (2008)
    [66] M.Willander, O.Nur, J.R.Sadaf, M.I.Qadir, S.Zaman, A.Zainelabdin, N.Bano, and I.Hussain, “Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices”, Materials, 3, 2643-2667 (2010)
    [67] B.Lin, Z.Fu, and Y.Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl.Phys. Lett., 79, 943 (2001)

    [68] A.B.Djurisic, A.M.C.Ng, and X.Y.Chen, “ZnO nanostructures for optoelectronics-material properties and device applications”, Progress in Quantum Electronics, 34, 191–259 (2010)
    [69] S.Vempati, JMitra, and P.Dawson, “One-step synthesis of ZnO nanosheets: a blue-white fluorophore”, Nanoscale Res.Lett., 7, 470 (2012)
    [70] B.Cao, W.Cai, and H.Zeng, “Temperature-dependent shifts of three emission bands for nanoneedle array”, Appl.Phys.Lett., 88, 161101 (2006)
    [71] C.H.Ahn, Y.Y.Kim, D.C.Kim, S.K.Mohanta, and H.K.Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods”, J.Appl.Phys, 105, 013592 (2009)
    [72] T.Tomita, K.Yamashita, Y.Hayafuji, and H.Adachi, “The origin of n-type conductivity in undoped In2O3”, Appl.Phys.Lett., 87, 051911 (2005)
    [73] B.K.Mayer, “Landolt-Börnstein - Group III Condensed Matter”, Springer–Verlag (2000)
    [74] B.V.Zeghbroeck, “Principles of Semiconductor Devices”, Prentice Hall (2010)
    [75] K.Alfaramawi, “Electric field dependence of the electron mobility in bulk wurtzite ZnO”, Bull.Mater.Sci, 37, 7 (2014)
    [76] D.A.Neamen, “Semiconductor Physics and Devices: Basic Principle”, Mc Graw Hill Education (2012)
    [77] U.Godavarti, V.D.Mote, and M.Dasari, “Role of cobalt doping on the electrical conductivity of ZnO nanoparticles”, Journal of Asian Ceramic Societies, 5, 391-396 (2017)
    [78] J.Singleton, “Band Theory and Electronic Properties of Solids”, Oxford University Press (2001)
    [79] S.M.Sze, K.K.Ng, “Physics of Semiconductor Devices”, John Wiley & Sons (2007)
    [80] P.Swaminathan, “Semiconductor Materials, Devices, and Fabrication”, John Wiley & Sons,Wiley Interscience (2017)
    [81] K.I.Hagemark, and L.C.Chacka, “Electrical transport properties of Zn doped ZnO”, Journal of Solid State Physics, 15, 3, 261-270 (1975)
    [82] J.Han, A.M.R.Senos, P.Q.Mantas, and W.Cao, “Dielectric relaxation of shallow donor in polycrystalline Mn-doped ZnO”, J.Appl.Phys., 93, 7 (2003)
    [83] M.S.R.Rao, and T.Okada, “ZnO Nanocryatals and Allied Material”, Springer India (2014)

    [84] J.M.Qin, B.Yao, Y.Yan, J.Y.Zhang, X.P.Jia, Z.Z.Zhang, B.H.Li, C.X.Shan, and D.Z.Shen, “Formation of stable and reproducible low resistivity and high carrier concentration pp-type ZnO doped at high pressure with Sb”, Appl.Phys.Lett, 95, 022101 (2009)
    [85] O. L.Tirpak, W.V.Schoenfeld, L.Chernyak, F.X.Xiu, J.L.Liu, S.Jang, F.Ren, S.J.Pearton, A.Osinsky, and P.Chow, “Carrier concentration dependence of acceptor activation energy in p-type ZnO”, Appl.Phys.Lett., 88, 202110 (2006)
    [86] K.Igamberdive, S.Yuldashev, H.D.Cho, T.W.Kang, and A.Shashkov, “Thermal Conductivity of ZnO Nanowires Embedded in Poly(methyl methacrylate) Matrix”, Appl.Phys.Express, 4, 015001 (2011)
    [87] M.Kosir, M.Podlogar, N.Daneu, A.Recnik, E.Guilmeau, and S.Bernik, “Phase Formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics”, J.Eur.Ceram.Soc., 37, 2833-2842 (2017)
    [88] X.Wu, J.Lee, V.Varshney, J.L.Wohlwend, A.K.Roy, and T.Luo, “Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride”, Scientific Reports, 6,22504 (2016)
    [89] N.H.T.Ngyuen, T.H.Ngyuen, Y.R.Liu, M.Aminzare, A.T.T.Pham, S.Cho, D.P.Wong, K.H.Chen, T.Seetawan, N.K.Pham, H.K.T.Ta, V.C.Tran, and T.B.Phan, “Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films”, Appl.Mater.Interfaces, 8, 33916-33923 (2016)
    [90] J.H.Kim, D.K.Seo, C.H.Ahn, S.W.Shin, H.H.Cho, and H.K.Cho, “Hybrid solution processed InGaO3(ZnO)m thin films with periodic layered structures and thermoelectric properties”, J.Mater.Chem, 22, 16312 (2012)
    [91] L.J.Cui, Z.H.Ge,and P.QinJ.Feng, “Enhanced thermoelectric properties of In2O3(ZnO)5 intrinsic superlattice ceramics by optimizing the sintering process”, RSC Adv., 49883-49889 (2017)
    [92] Y.Yang, K.C.Pradel, Q.Jing, J.M.Wu, F.Zhang, Y.Zhou, Y.Zhang, and Z.L.Wang, “Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/ Nanobelts”, ACS Nano, 6, 8, 6984-6989 (2012)
    [93] G.Li, L.Xiao, S.Liu, H.Wang, Y.Gao,and Q.Wang, “Effect of nanowires in microporous structures on the thermoelectric properties of oxidized Sb-doped ZnO film”, J.Eur.Ceram.Soi, 38, 1608-1613 (2018)

    無法下載圖示 校內:2021-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE