| 研究生: |
王冠中 Wang, Kuan-Chung |
|---|---|
| 論文名稱: |
遠距醫療服務建構模式:困境因應框架與資源配置策略 Telemedicine Implementation Strategies: Addressing Barriers and Optimizing Resource Allocation |
| 指導教授: |
陳芃婷
Chen, Peng-Ting |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 數位健康 、遠距醫療 、導入策略 、醫療人員 、醫療機構 、詮釋結構模型(ISM) 、決策試驗與評估實驗室方法(DEMATEL) 、分析網路程序法(ANP) |
| 外文關鍵詞: | Digital Health, Telemedicine, Implementation Strategy, Healthcare Practitioners, Medical Institution, Interpretive Structural Modeling (ISM), Decision-Making Trial and Evaluation Laboratory (DEMATEL), Analytic Network Process (ANP) |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去COVID-19疫情突顯了遠距醫療(Telemedicine)在醫療服務中的關鍵角色,為確保病患照護不中斷,全球醫療從業人員迅速採用遠距醫療作為應變措施。隨著疫情趨緩,遠距醫療正面臨由「緊急應用」邁向「常態整合」的轉型需求。然而,關於後疫情時代遠距醫療導入醫療體制研究缺乏,且未能全面探討阻礙遠距醫療廣泛採用的挑戰與策略,因此不利於將遠距醫療常規化與制度化,使其可以融入成為現行醫療體系標準的一環。本研究旨在建構一套分析架構,辨識實施障礙,並提出具體的遠距醫療之導入策略。透過文獻回顧與實證資料的綜合分析,深入探討遠距醫療服務從疫情應變過渡至制度化應用的關鍵策略,並從醫療從業人員在疫情下的的實務經驗中觀察萃取,進一步揭示推動遠距醫療導入現行醫療系統並持續發展所面臨之挑戰與障礙。
本研究基於創新阻力理論(Innovation Resistance Theory,IRT)與科技接受與使用統一理論(Unified Theory of Acceptance and Use of Technology,UTAUT)之擴展模型,結合基於臺灣醫療從業人員的專家訪談與調查結果,歸納出影響遠距醫療導入醫療院所的四大障礙構面:使用效益(Usage Benefit)、風險顧慮(Risk Concern)、機構支援(Institutional Support)與社會影響(Social Influence),並進一步釐清其下共計16項關鍵障礙。本研究進一步採用了混合方法包含詮釋結構模型(Interpretive Structural Modeling,ISM)、重要性-接受度分析模型(Importance-Acceptance Analysis,IAA)、決策試驗與評估實驗室方法(Decision Making and Trial Evaluation Laboratory,DEMATEL),以及分析網路程序法(Analytic Network Process,ANP)進行系統性的問卷分析,將質性研究轉為量化數據並提出具體可行的發展路徑與短長期因應行動與目標。
研究主要結果顯示,醫療機構與服務提供者在推動遠距醫療的初期,應暫緩處理風險與照護品質相關議題,優先投入於增進系統互通性、服務可近性及政策資源支持之建構。而基於社會條件的相關影響則可於資源允許時逐步改善。本研究提出的策略路徑可為政策制定者和機構提供實用指南,幫助他們重新思考服務發展模式,進一步提高使用者接受度,並促進醫療保健的短期可及性與長期改善。此外,本研究更強調醫療從業人員為推動遠距醫療落實的核心推力,並提出短長期的適應性策略,以強化其參與動機與實務支持。落實本研究建議的相關策略,將有助於促進遠距醫療從臨時應變工具轉化為醫療體系中不可或缺的常規機制,進而提升後疫情時代醫療的可近性、效率與品質。
The COVID-19 pandemic underscored the critical role of Telemedicine in maintaining continuity of care. In response, healthcare practitioners globally, as well as in Taiwan, rapidly adopted Telemedicine solutions. As the pandemic subsides, the focus must now shift from emergency deployment to strategic, sustainable integration of Telemedicine into routine and standard healthcare delivery. However, existing research has not fully examined the multifaceted challenges that hinder its institutionalization.
This study aims to establish a comprehensive framework for the long-term adoption of Telemedicine, identifying key barriers and proposing evidence-based strategies for sustainable implementation. Drawing upon an extensive literature review and empirical data from Taiwanese healthcare practitioners, this research leverages an extended model combining Innovation Resistance Theory (IRT) and the Unified Theory of Acceptance and Use of Technology (UTAUT). Sixteen critical obstacles were identified, categorized across four dimensions: Usage Benefit, Risk Concern, Institutional Support, and Social Influence. Using advanced hybrid methodologies, including Interpretive Structural Modeling (ISM), Importance–Acceptance Analysis (IAA), Decision-Making Trial and Evaluation Laboratory (DEMATEL), and the Analytic Network Process (ANP), the study proposes actionable and prioritized strategies for Telemedicine integration.
Key findings suggest that, in the short term, healthcare institutions should deprioritize concerns related to care quality and risk and instead focus on enhancing interoperability, service accessibility, and institutional support. Social influence factors may be addressed progressively as resources permit. Moreover, the study emphasizes the central role of healthcare practitioners as catalysts for Telemedicine adoption. It outlines tailored, phased strategies to enhance their engagement, both in the short term and over the long term. By implementing the proposed framework and strategies, healthcare systems can successfully transition Telemedicine from a pandemic-driven contingency to a permanent, value-driven component of modern healthcare delivery, ultimately improving accessibility, operational efficiency, and quality of care in the post-pandemic era.
Ahmad, N., & Qahmash, A. (2021). Smartism: Implementation and assessment of interpretive structural modeling. Sustainability, 13(16), 8801. Retrieved from http://smartism.sgetm.com/ISM.aspx/. doi:https://doi.org/10.3390/su13168801
Alam, M. M. D., Alam, M. Z., Rahman, S. A., & Taghizadeh, S. K. (2021). Factors influencing mHealth adoption and its impact on mental well-being during COVID-19 pandemic: A SEM-ANN approach. Journal of Biomedical Informatics, 116, 103722.
Alam, M. Z., Hoque, M. R., Hu, W., & Barua, Z. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. International Journal of Information Management, 50, 128-143.
Almathami, H. K. Y., Win, K. T., & Vlahu-Gjorgievska, E. (2020). Barriers and facilitators that influence telemedicine-based, real-time, online consultation at patients’ homes: systematic literature review. Journal of medical Internet research, 22(2), e16407.
Assarroudi, A., Heshmati Nabavi, F., Armat, M. R., Ebadi, A., & Vaismoradi, M. (2018). Directed qualitative content analysis: the description and elaboration of its underpinning methods and data analysis process. Journal of Research in Nursing, 23(1), 42-55.
Attri, R., Grover, S., Dev, N., & Kumar, D. (2013). An ISM approach for modelling the enablers in the implementation of Total Productive Maintenance (TPM). International Journal of System Assurance Engineering and Management, 4(4), 313-326.
Barba, R., Rosado, C., Pardo-Moreno, J., & Rey-Biel, J. (2020). Managing people, roles, and resources during Covid-19 surge. NEJM Catalyst Innovations in Care Delivery.
Barnett, M. L., Ray, K. N., Souza, J., & Mehrotra, A. (2018). Trends in telemedicine use in a large commercially insured population, 2005-2017. Jama, 320(20), 2147-2149.
Bashshur, R., Doarn, C. R., Frenk, J. M., Kvedar, J. C., & Woolliscroft, J. O. (2020). Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and e-Health, 26(5), 571-573.
Bell, E., Bryman, A., & Harley, B. (2018). Business research methods: Oxford university press.
Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B. (2012). Factors influencing the Thai elderly intention to use smartphone for e-Health services. Paper presented at the 2012 IEEE symposium on humanities, science and engineering research.
Centers for Medicare and Medicaid Services (CMS). (2025). Telehealth. Retrieved from https://www.medicaid.gov/medicaid/benefits/telehealth
Chang, N., Wang, M., & Chen, Y. (2008). Using ISM to Explore the Strategies for Possible Impacts on Kaohsiung’s Grand Development from Cross-strait Direct Shipping. Journal of management, 25(6), 135-154.
Chauhan, A., Jakhar, S. K., & Jabbour, C. J. C. (2022). Implications for sustainable healthcare operations in embracing telemedicine services during a pandemic. Technological Forecasting and Social Change, 176, 121462.
Chen, P.-T. (2018). Medical big data applications: Intertwined effects and effective resource allocation strategies identified through IRA-NRM analysis. Technological Forecasting and Social Change, 130, 150-164.
Chen, P.-T., & Chen, J.-H. (2015). Implementing cloud-based medical systems in hospitals and strategic implications. Technology Analysis & Strategic Management, 27(2), 198-218.
Chen, P.-T., & Kuo, S.-C. (2017). Innovation resistance and strategic implications of enterprise social media websites in Taiwan through knowledge sharing perspective. Technological Forecasting and Social Change, 118, 55-69.
Chen, P.-T., Lin, C.-L., & Wu, W.-N. (2020). Big data management in healthcare: Adoption challenges and implications. International Journal of Information Management, 53, 102078.
Chiang, K.-F., Wang, H.-H., Chien, I.-K., Liou, J.-K., Hung, C.-L., Huang, C.-M., & Yang, F.-Y. (2015). Healthcare providers’ perceptions of barriers in implementing of home telecare in Taiwan: A qualitative study. International journal of medical informatics, 84(4), 277-287.
Measures for the Administration of Internet Diagnosis and Treatment, National Health Commission 2018 C.F.R. (2018).
Choi, J. S., Lin, M., Park, S., Abdur-Rahman, F., Kim, J. H., & Voelker, C. C. (2022). Physician satisfaction with telemedicine and in-person visits in otolaryngology. American journal of otolaryngology, 43(5), 103596.
Commission Nationale de l’Informatique et des Libertés (CNIL). (2018). Telemedicine: How to protect patient data? Retrieved from https://www.cnil.fr/fr/telemedecine-comment-proteger-les-donnees-des-patients
Dalvi-Esfahani, M., Niknafs, A., Kuss, D. J., Nilashi, M., & Afrough, S. (2019). Social media addiction: Applying the DEMATEL approach. Telematics and Informatics, 43, 101250.
European Commission. (2022). European Health Data Space Regulation (EHDS). Retrieved from https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en
General Data Protection Regulation (GDPR)- Personal Data, OJ L 119, 04.05.2016; cor. OJ L 127, 23.5.2018 C.F.R. (2018).
Falatoonitoosi, E., Leman, Z., Sorooshian, S., & Salimi, M. (2013). Decision-making trial and evaluation laboratory. Research Journal of Applied Sciences, Engineering and Technology, 5(13), 3476-3480.
Federal Communications Commission. (2024). Telehealth, telemedicine, and telecare: what’s what? Retrieved from https://www.fcc.gov/general/telehealth-telemedicine-and-telecare-whats-what
Fontela, E., & Gabus, A. (1976). The DEMATEL observer: battelle institute. Geneva Research Center, 56-61.
Gabus, A., & Fontela, E. (1973). Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility. In: DEMATEL report.
Gelburd, R. (2021). Telehealth Claim Lines Increase in October 2020 as COVID-19 Pandemic Surges. AJMC.
Govindan, K., Kannan, D., & Noorul Haq, A. (2010). Analyzing supplier development criteria for an automobile industry. Industrial Management & Data Systems, 110(1), 43-62.
Govindan, K., Palaniappan, M., Zhu, Q., & Kannan, D. (2012). Analysis of third party reverse logistics provider using interpretive structural modeling. International Journal of Production Economics, 140(1), 204-211.
Guo, X., Liu, A., Li, X., & Xiao, Y. (2020). Research on the intelligent fault diagnosis of medical devices based on a dematel-fuzzy concept lattice. International Journal of Fuzzy Systems, 22, 2369-2384.
Haleem, A., Javaid, M., & Khan, I. H. (2019). Current status and applications of artificial intelligence (AI) in medical field: An overview. Current Medicine Research and Practice, 9(6), 231-237.
Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors International, 2, 100117.
Harst, L., Lantzsch, H., & Scheibe, M. (2019). Theories predicting end-user acceptance of telemedicine use: systematic review. Journal of medical Internet research, 21(5), e13117.
Health Resources and Services Administration (HRSA). (2025, March 20, 2025). Telehealth policy updates. Retrieved from https://telehealth.hhs.gov/providers/telehealth-policy/telehealth-policy-updates
Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120.
Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International journal of medical informatics, 101, 75-84.
Hsu, C.-W., Kuo, T.-C., Chen, S.-H., & Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of Cleaner Production, 56, 164-172.
Hsu, D. W., Shen, Y.-C., Yuan, B. J., & Chou, C. J. (2015). Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan. Technological Forecasting and Social Change, 92, 25-39.
Huang, D., Jin, X., & Coghlan, A. (2021). Advances in consumer innovation resistance research: A review and research agenda. Technological Forecasting and Social Change, 166, 120594.
International Bar Association Healthcare and Life Sciences Law Committee. (2022a). Telemedicine: A Global Approach to Trends and Practices: Telemedicine Survey – China. Retrieved from https://www.ibanet.org/document?id=Healthcare-Telemedicine-Survey-China
International Bar Association Healthcare and Life Sciences Law Committee. (2022b). Telemedicine: A Global Approach to Trends and Practices: Telemedicine Survey – Germany. Retrieved from https://www.ibanet.org/document?id=Healthcare-Telemedicine-Survey-Germany
International Bar Association Healthcare and Life Sciences Law Committee. (2022c). Telemedicine: A Global Approach to Trends and Practices: Telemedicine Survey – Japan. Retrieved from https://www.ibanet.org/document?id=Healthcare-Telemedicine-Survey-Japan
Jandoo, T. (2020). WHO guidance for digital health: what it means for researchers. Digital health, 6, 2055207619898984.
Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega, 35(3), 274-289.
Joachim, V., Spieth, P., & Heidenreich, S. (2018). Active innovation resistance: An empirical study on functional and psychological barriers to innovation adoption in different contexts. Industrial Marketing Management, 71, 95-107.
HR 1892–115th Congress (2017–2018): Bipartisan Budget Act of 2018, 9 C.F.R. (2018).
Kassarjian, H. H., & Kassarjian, W. M. (1988). The impact of regulation on advertising: A content analysis. Journal of Consumer Policy, 11(3), 269-285.
Kautish, P., Siddiqui, M., Siddiqui, A., Sharma, V., & Alshibani, S. M. (2023). Technology-enabled cure and care: an application of innovation resistance theory to telemedicine apps in an emerging market context. Technological Forecasting and Social Change, 192, 122558.
Koonin, L. M., Hoots, B., Tsang, C. A., Leroy, Z., Farris, K., Jolly, B., . . . Tong, I. (2020). Trends in the use of telehealth during the emergence of the COVID-19 pandemic—United States, January–March 2020. Morbidity and Mortality Weekly Report, 69(43), 1595.
Physicians Act, No.10500147111 C.F.R. (2016).
Medical Care Act, No. 10600056441 C.F.R. (2017).
Regulations of Medical Diagnosis and Treatment by Telecommunication, 2018 (No. 1071662596), 1071662596 C.F.R. (2018).
Physicians Act, No. 11100050741 C.F.R. (2022).
Medical Care Act, No.10900003861 C.F.R. (2023).
Regulations of Medical Diagnosis and Treatment by Telecommunication, 2024 (No. 1131660423), 1131660423 C.F.R. (2024).
Li, Y.-C. J., Yen, J.-C., Chiu, W.-T., Jian, W.-S., Syed-Abdul, S., & Hsu, M.-H. (2015). Building a national electronic medical record exchange system–Experiences in Taiwan. Computer methods and programs in biomedicine, 121(1), 14-20.
Lin, C.-L. (2015). A novel hybrid decision-making model for determining product position under consideration of dependence and feedback. Applied Mathematical Modelling, 39(8), 2194-2216.
Lin, C.-L. (2019). The analysis of sustainable development strategies for industrial tourism based on IOA-NRM approach. Journal of Cleaner Production, 241, 118281.
Liu, Y., Zhang, Z., & Mao, Z. (2020). Analysis of influencing factors in pre-evacuation time using Interpretive Structural Modeling. Safety science, 128, 104785.
Ma, Y., Zhao, C., Zhao, Y., Lu, J., Jiang, H., Cao, Y., & Xu, Y. (2022). Telemedicine application in patients with chronic disease: a systematic review and meta-analysis. BMC medical informatics and decision making, 22(1), 105.
Mahalik, D. K. (2017). Enabler for success in information technology implementation: a case discussion of telemedicine of Odisha. International Journal of Telemedicine and Clinical Practices, 2(1), 12-30.
Malouff, T. D., TerKonda, S. P., Knight, D., Perlman, A. I., Munipalli, B., Dudenkov, D. V., . . . Pascual, J. M. (2021). Physician Satisfaction With Telemedicine During the COVID-19 Pandemic: The Mayo Clinic Florida Experience. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 5(4), 771-782.
Mandal, A., & Deshmukh, S. (1994). Vendor selection using interpretive structural modelling (ISM). International journal of operations & production management, 14(6), 52-59.
Mani, Z., & Chouk, I. (2017). Drivers of consumers’ resistance to smart products. Journal of Marketing Management, 33(1-2), 76-97.
Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. Journal of marketing, 41(1), 77-79.
Mohammed, R., Elmajid, E. A., Amine, H., & Khadija, C. (2023). Acceptance factors of telemedicine technology during Covid‐19 pandemic among health professionals: A qualitative study. Healthcare Technology Letters, 10(1-2), 23-33.
National Health Insurance Administration. (2023). Medical Institutions Designated for Telemedicine by the National Health Insurance Administration, MOHW. Retrieved from https://www.nhi.gov.tw/ch/cp-2173-cb584-3160-1.html
National Health Insurance Administration. (2024). National Health Insurance Telemedicine Reimbursement Plan. Retrieved from https://www.nhi.gov.tw/ch/cp-15460-bd0a9-3258-1.html.
Neuendorf, K. A. (2017). The content analysis guidebook: sage.
H.R.6074 - 116th Congress (2019-2020): Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020., (2019).
Nittari, G., Khuman, R., Baldoni, S., Pallotta, G., Battineni, G., Sirignano, A., . . . Ricci, G. (2020). Telemedicine practice: review of the current ethical and legal challenges. Telemedicine and e-Health, 26(12), 1427-1437.
Quesada-Caballero, M., Carmona-García, A., Chami-Peña, S., Caballero-Mateos, A. M., Fernández-Martín, O., Cañadas-De la Fuente, G. A., & Romero-Bejar, J. L. (2023). Telemedicine in Elderly Hypertensive and Patients with Chronic Diseases during the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Journal of clinical medicine, 12(19), 6160.
Raj, T., & Attri, R. (2011). Identification and modelling of barriers in the implementation of TQM. International Journal of Productivity and Quality Management, 8(2), 153-179.
Ram, S. (1987). A model of innovation resistance. ACR North American Advances.
Ram, S. (1989). Successful innovation using strategies to reduce consumer resistance An empirical test. Journal of Product Innovation Management: AN INTERNATIONAL PUBLICATION OF THE PRODUCT DEVELOPMENT & MANAGEMENT ASSOCIATION, 6(1), 20-34.
Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: the marketing problem and its solutions. Journal of consumer marketing, 6(2), 5-14. Retrieved from https://doi.org/10.1108/EUM0000000002542. doi:10.1108/EUM0000000002542
Rau, E., Tischendorf, T., & Mitzscherlich, B. (2024). Implementation of the electronic health record in the German healthcare system: an assessment of the current status and future development perspectives considering the potentials of health data utilisation by representatives of different stakeholder groups. Frontiers in Health Services, 4, 1370759.
Ronquillo, Y., Meyers, A., & Korvek, S. J. (2021). Digital Health. In StatPearls. Treasure Island (FL): StatPearls Publishing
Copyright © 2021, StatPearls Publishing LLC.
Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process (Vol. 4922): RWS Publ. Pittsburgh, PA, USA.
Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process (Vol. 282): Springer.
Scott Kruse, C., Karem, P., Shifflett, K., Vegi, L., Ravi, K., & Brooks, M. (2018). Evaluating barriers to adopting telemedicine worldwide: a systematic review. Journal of telemedicine and telecare, 24(1), 4-12.
Seivert, S., & Badowski, M. E. (2021). The Rise of Telemedicine: Lessons from a Global Pandemic. EMJ Innovation, 5(1), 64-69.
Shimizu, H., Tanikawa, T., Mizuguchi, H., Tani, Y., & Ogasawara, K. (2021). Analysis of Factors Inhibiting the Dissemination of Telemedicine in Japan: Using the Interpretive Structural Modeling. Telemedicine and e-Health, 27(5), 575-582.
Singh, C., Singh, D., & Khamba, J. (2021). Analyzing barriers of Green Lean practices in manufacturing industries by DEMATEL approach. Journal of Manufacturing Technology Management, 32(1), 176-198.
Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, L. J. (2020). Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). Journal of telemedicine and telecare, 26(5), 309-313.
Smith, W. R., Atala, A. J., Terlecki, R. P., Kelly, E. E., & Matthews, C. A. (2020). Implementation guide for rapid integration of an outpatient telemedicine program during the COVID-19 pandemic. Journal of the American College of Surgeons, 231(2), 216-222. e212.
SteelFisher, G. K., McMurtry, C. L., Caporello, H., Lubell, K. M., Koonin, L. M., Neri, A. J., . . . Espino, L. C. (2023). Video telemedicine experiences in COVID-19 were positive, but physicians and patients prefer in-person care for the future: Study examines patient and physician opinion of telemedicine experiences during COVID-19. Health Affairs, 42(4), 575-584.
Strehle, E., & Shabde, N. (2006). One hundred years of telemedicine: does this new technology have a place in paediatrics? Archives of disease in childhood, 91(12), 956-959.
Su, Z., Li, C., Fu, H., Wang, L., Wu, M., & Feng, X. (2024). Development and prospect of telemedicine. Intelligent Medicine, 4(1), 1-9. Retrieved from https://www.sciencedirect.com/science/article/pii/S2667102622000791. doi:https://doi.org/10.1016/j.imed.2022.10.004
Szmigin, I., & Foxall, G. (1998). Three forms of innovation resistance: the case of retail payment methods. Technovation, 18(6-7), 459-468.
Taiwan Ministry of Health and Welfare. (2023). Annual Report of Medical Care Institution & Hospital Utilization, 2022. Retrieved from https://dep.mohw.gov.tw/DOS/lp-5099-113.html
Taiwan Ministry of Health and Welfare. (2025). List of Hospital Accreditation. Retrieved from https://dep.mohw.gov.tw/DOMA/lp-949-106.html
Thakkar, J. J., & Thakkar, J. J. (2021). Decision-making trial and evaluation laboratory (DEMATEL). Multi-Criteria Decision Making, 139-159.
US Department of Health, & Human Services. (2022). Guidance on how the HIPAA rules permit covered health care providers and health plans to use remote communication technologies for audio-only telehealth.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Introducing the Scheme for Application and Development of Smart Healthcare Information Technology for the 2019 - 2025 Period, No. 4888/QD-BYT C.F.R. (2019).
Approving Scheme for Remote Medical Examination and Treatment For 2020 - 2025, No. 2628/QD-BYT C.F.R. (2020).
Wahezi, S. E., Kohan, L. R., Spektor, B., Brancolini, S., Emerick, T., Fronterhouse, J. M., . . . Anitescu, M. (2021). Telemedicine and current clinical practice trends in the COVID-19 pandemic. Best Practice & Research Clinical Anaesthesiology, 35(3), 307-319.
Wang, C. J., Ng, C. Y., & Brook, R. H. (2020). Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. Jama, 323(14), 1341-1342.
Wang, K.-C., Huang, P.-S., Wang, Y.-L., Hoe, Z.-Y., Noor, A. A., & Chen, P.-T. (2025). Bridging the Gap: Healthcare Practitioners' Insights on Overcoming Telemedicine Barriers and Optimal Strategies for Implementation. Technology in Society, 102899.
Wang, W.-C., Lin, Y.-H., Lin, C.-L., Chung, C.-H., & Lee, M.-T. (2012). DEMATEL-based model to improve the performance in a matrix organization. Expert systems with Applications, 39(5), 4978-4986.
Warfield, J. N. (1973). Binary matrices in system modeling. IEEE Transactions on Systems, Man, and Cybernetics(5), 441-449.
Warfield, J. N. (2003). The mathematics of structure: AJAR Publishing Company.
Weinstein, R. S., Lopez, A. M., Joseph, B. A., Erps, K. A., Holcomb, M., Barker, G. P., & Krupinski, E. A. (2014). Telemedicine, telehealth, and mobile health applications that work: opportunities and barriers. The American journal of medicine, 127(3), 183-187.
Wen, H.-C., Chang, W.-P., Hsu, M.-H., Ho, C.-H., & Chu, C.-M. (2019). An assessment of the interoperability of electronic health record exchanges among hospitals and clinics in Taiwan. JMIR medical informatics, 7(1), e12630.
WHO Global Observatory for eHealth. (2010). Telemedicine: opportunities and developments in Member States: report on the second global survey on eHealth. In. Geneva: World Health Organization.
Wosik, J., Fudim, M., Cameron, B., Gellad, Z. F., Cho, A., Phinney, D., . . . Ferranti, J. (2020). Telehealth transformation: COVID-19 and the rise of virtual care. Journal of the American Medical Informatics Association, 27(6), 957-962.
Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep using my health apps: Discover users' perception of health and fitness apps with the UTAUT2 model. Telemedicine and e-Health, 21(9), 735-741.
校內:2030-08-18公開