簡易檢索 / 詳目顯示

研究生: 卓彥良
Cho, Yen-Liang
論文名稱: 發展環狀指叉型電極晶片系統以建構可快速量化乳酸菌之分析平台
Development of Ring-Shaped Interdigitated Electrode Platform to Rapidly Quantify Lactic Acid Bacteria
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: 微型濃縮器介電泳交流電滲透流乳酸菌螢光
外文關鍵詞: Micro-concentrator, Dielectrophoretic (DEP), AC electroosmotic (ACEO) flow, Lactic acid bacteria, Fluorescent
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據市場調查所得資料發現,發酵業對生產過程中的原料含菌量的即時監控,仍是一個急需被滿足的品管需求。本研究所研發之環狀指叉型電極晶片是以介電泳及交流電滲透流為理論基礎,發展出來的一種快速量化乳酸菌樣本濃度之檢測平台。乳酸菌樣本經過適當的前處理後被滴在環狀指叉型晶片上。在適當的交流電訊號輸入的情況下,環狀指叉型晶片將可以推動樣品中的微小粒子進入電極正中央的檢測區域。透過顯微影像擷取系統拍攝檢測區域每分鐘的粒子蒐集情形,再經影像處理軟體可將其蒐集情況量化,得到環狀指叉型晶片計數數據。將此數據帶入實驗所得的乳酸菌檢量線中,將可以得到該樣品實際的乳酸菌濃度。尤須指出的是,環狀指叉型檢測平台所需要的樣品檢測體積僅需100 μl,整套檢驗流程可在30分鐘內完成,而且每次檢測所需的成本可明顯低於其他同類型的裝置,此乃本項乳酸菌濃度檢測裝置最大的優勢。在未來,我們所研發出來的環狀指叉型檢測平台不只可以應用在乳酸菌樣本濃度的量化,還可在其他水體試樣相關的含菌量快速檢測議題上有所發揮。例如,養殖水體、尿道感染、富血小板血漿、溫泉水中的含菌數等等的檢測上。

    According to the unmet need of the fermentation industry, a real-time monitoring detection device has an urgent need in the production plant of the lactic acid bacteria (LAB) products. Ring-shaped interdigitated electrode (RIDE) which is based on the theory of dielectrophoresis (DEP) and AC electroosmosis (ACEO) is developed to rapid monitor the concentration of the LAB samples. At the condition of the appropriate AC signal input applies on RIDE chip, the small particles of the LAB sample which has experienced the pretreatment dropped on the surface of the chip could be pushed into the center of RIDE chip. Using microscopy CCD to capture the collection results per min and analyzing the results as the data of RIDE count. Then, using the data to fit the calibration curve, the concentration of the LAB sample could be found out immediately. The small amount of sample (~100 μl) is needed for detection, the total detection time is within 30 min and the cost of each detection is much lower than the similar products of concentration detection are the three biggest advantage of this RIDE platform. In the future, RIDE platform can be applied to not only the quantification of bacteria concentration but also the other rapid concentration detection of the related sample, such as urinary tract infection, bacterial contamination in platelet-rich plasma, aquaculture water, and spring water and so on.

    Abstract................................................I 中文摘要................................................II 致謝..................................................III Contents...............................................IV List of Figures........................................VI List of Tables.........................................IX Chapter 1 Introduction..................................1 1.1 Background and Motivation.......................1 1.2 Comparison of Current Techniques................3 1.2.1 Plate Count.....................................3 1.2.2 Electrochemical Detection.......................3 1.2.3 Flow Cytometry..................................5 1.2.4 Immunoassay.....................................6 1.2.5 Microfluidic System.............................6 1.3 Electrokinetics.................................7 1.3.1 Dielectrophoresis (DEP).........................7 1.3.2 Electric Double Layer (EDL).....................9 1.3.3 Electroosmosis (EO)............................11 1.3.4 AC Electroosmosis (ACEO).......................14 1.4 Research Configuration.........................16 Chapter 2 Materials and Methods........................17 2.1 Improvement of Ring-Shaped Interdigitated Electrode......................................17 2.2 Chip Fabrication...............................20 2.2.1 Photolithography...............................20 2.2.2 Dielectric Layer...............................22 2.3 Sample Preparation.............................24 2.4 Lactic Acid Bacteria Labeled by Fluorescent Staining.......................................25 2.5 System Configuration and Experimental Procedure ...............................................26 Chapter 3 Results and Discussion.......................28 3.1 Sample Conductivity under Pretreatment 28 3.2 Characterization for Flow Velocity of Bacterial Particles......................................29 3.2.1 Different Materials in Dielectric Layer........30 3.3 Number Count of Lactic Acid Bacteria...........32 3.3.1 Results of Plate Count.........................32 3.3.2 Results of RIDE Collection.....................34 3.3.3 Establishment of Calibration Curve.............42 3.4 Accuracy Assessment by Blind Test..............48 Chapter 4 Conclusion and Prospect......................54 References.............................................56

    [1] Z.-S. Huang, L.-F. Chen, Clinical Application of Probiotics, The Journal of Taiwan Pharmacy, 25, 96-102, 2006.
    [2] 台灣優良食品發展協會, 含乳酸菌機能性食品規格基準, 104496, 52-54, 2015.
    [3] H. Dongeun, G. Wei, K. Yoko, B.G. James, T. Shuichi, Microfluidics for Flow Cytometric Analysis of Cells and Particles, Physiological Measurement, 26, R73, 2005.
    [4] Y. Amano, J.-i. Arai, S. Yamanaka, K. Isshiki, Rapid and Convenient Estimation of Bacterial Cell Count in Food Using Oxygen Electrode Sensor, Nippon Shokuhin Kagaku Kogaku Kaishi, 48, 94-98, 2001.
    [5] S. Tanno, Fukui, N., Utaka, Y., Ohkawa, S., Morita, Y., & Boonmar, S., Quantitative Method for Detecting Vibrio Species Using Bio-theta DOX(TM) System., The Thai Journal of Veterinary Medicine, 44(4), 541-546, 2014.
    [6] R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P.M. Sarro, R. Palumbo, M.R. Scarfi, Development and Characterization of An Integrated Silicon Micro Flow Cytometer, Analytical and Bioanalytical Chemistry, 386, 1267-1272, 2006.
    [7] R.M. Lequin, Enzyme Immunoassay (EIA)/Enzyme-linked Immunosorbent Assay (ELISA), Clinical Chemistry, 51, 2415, 2005.
    [8] R.D. Grange, J.P. Thompson, D.G. Lambert, Radioimmunoassay, Enzyme and Non-enzyme-based Immunoassays, BJA: British Journal of Anaesthesia, 112, 213-216, 2014.
    [9] T. Nolan, R.E. Hands, S.A. Bustin, Quantification of mRNA Using Real-time RT-PCR, Nature Protocols, 1, 1559-1582, 2006.
    [10] P. Sawant, A. Kshar, R. Byakodi, A. Paranjpe, Immunofluorescence in Oral Mucosal Diseases ¨CA Review, Oral Surgery Oral Medicine Oral Radiology, 2, 6-10, 2014.
    [11] K.I. Inatomi, S.I. Izuo, S.S. Lee, Application of A Microfluidic Device for Counting of Bacteria, Letters in Applied Microbiology, 43, 296-300, 2006.

    [12] C. Sakamoto, N. Yamaguchi, M. Yamada, H. Nagase, M. Seki, M. Nasu, Rapid Quantification of Bacterial Cells in Potable Water Using a Simplified Microfluidic Device, Journal of Microbiological Methods, 68, 643-647, 2007.
    [13] R. Scott, P. Sethu, C.K. Harnett, Three-dimensional Hydrodynamic Focusing in A Microfluidic Coulter Counter, Review of Scientific Instruments, 79, 046104, 2008.
    [14] H.-T. Chen, Y.-N. Wang, Optical Microflow Cytometer for Particle Counting, Sizing and Fluorescence Detection, Microfluidics and Nanofluidics, 6, 529-537, 2009.
    [15] J.H. Nieuwenhuis, F. Kohl, J. Bastemeijer, P.M. Sarro, M.J. Vellekoop, Integrated Coulter Counter Based on 2-Dimensional Liquid Aperture Control, Sensors and Actuators B: Chemical, 102, 44-50, 2004.
    [16] K. Cheung, S. Gawad, P. Renaud, Impedance Spectroscopy Flow Cytometry: On-Chip Label-free Cell Differentiation, Cytometry Part A, 65A, 124-132, 2005.
    [17] C. Simonnet, A. Groisman, High-Throughput and High-resolution Flow Cytometry in Molded Microfluidic Devices, Analytical Chemistry, 78, 5653-5663, 2006.
    [18] R. Rodriguez-Trujillo, C.A. Mills, J. Samitier, G. Gomila, Low Cost Micro-coulter Counter with Hydrodynamic Focusing, Microfluidics and Nanofluidics, 3, 171-176, 2007.
    [19] H.M.a.N.G. Green, AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press LTD., 2003.
    [20] C.F. Maurice, P.J. Turnbaugh, Quantifying the Metabolic Activities of Human-associated Microbial Communities across Multiple Ecological Scales, FEMS Microbiology Reviews, 37, 830-848, 2013.
    [21] F. Joux, P. Lebaron, Use of Fluorescent Probes to Assess Physiological Functions of Bacteria at Single-cell Level, Microbes and Infection, 2, 1523-1535, 2000.
    [22] A. Rault, C. Beal, S. Ghorbal, J.C. Ogier, M. Bouix, Multiparametric Flow Cytometry Allows Rapid Assessment and Comparison of Lactic Acid Bacteria Viability after Freezing and During Frozen Storage, Cryobiology, 55, 35-43, 2007.

    下載圖示 校內:2023-08-17公開
    校外:2023-08-17公開
    QR CODE