簡易檢索 / 詳目顯示

研究生: 李順意
Li, Shun-Yi
論文名稱: 利用多層膜結構之太陽能選擇性吸收膜
High-Temperature Solar Selective Absorber Based on Multi-layer Structure
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 多層膜結構太陽能吸收器高溫吸收膜數值分析
外文關鍵詞: Multi-layer structure, Solar absorber, High temperature coatings, Numerical simulation.
相關次數: 點閱:92下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用了三氧化二鋁以及鎢材料做為半透明介電質與金屬干涉疊層型之主要研究,利用多層膜的結構來增加對太陽能譜的選擇性吸收,並且能在高溫時有低的放射率。首先利用套裝軟體COMSOL Multiphysics 建構數學模式,使用有限元素法(FEM)來模擬太陽能吸收層的傳播特性並求得其吸收、反射及穿透曲線,透過參數分析取得最佳平均吸收率之薄膜結構尺度,以便做為實驗參考依據。接著使用拋光過的SUS 304不鏽鋼基板,並以鎢材料做為金屬反射層,使用磁控濺鍍機將試片完整製作出而得到良好的選擇性吸收膜,並與模擬結果作比對。

    The present research is aimed to develop a high-temperature solar selective absorber based on multi-layer structure. This multi-layer selective solar absorber consists of dielectric and metallic layers serving as the absorbing layer as well as an IR reflector layer coated on SUS 304 substrate. Aluminium oxide is chosen to be the dielectric layer, and tungsten is chosen to be the metallic layer. By having this multi-layer structure, both solar absorptance and emittance can be improved significantly especially under high temperature. In parallel, numerical simulation is also performed by using a commercial software, COMSOL Multiphysics, in which a FEM analysis of the absorptance, reflectivity and transmittance of the coating is carried out. Based on the simulation results, theoretical values of surface properties under a variety of combinations of the thicknesses of the layers can be obtained. The aluminium oxide and tungsten are then fabricated on the stainless steel substrate by using sputtering process in accordance with the optimal thicknesses predicted by the simulation. The real values of solar absorptance and thermal emittance are measured and compared with the simulation results.

    摘要 I ABSTRACT II 誌謝 VII 目錄 IX 表目錄 XII 目錄 XIII 符號索引 XVI 第一章 前言 1 1.1 研究背景與動機 1 1.2 太陽能吸收膜 3 1.3 文獻回顧 4 1.3.1 本征吸收型 4 1.3.2 半導體吸收-金屬反串列型 5 1.3.3 介電質-金屬干涉疊層型 6 1.3.4 表面紋理 6 1.3.5 陶瓷金屬複合型 7 1.4 研究方向 7 第二章 理論模式 9 2.1 電磁波方程式 9 2.2 薄膜之光學常數及材料之介電常數 13 2.3 反射率與穿透率計算 14 2.4 電磁波輻射理論 16 2.4.1 太陽輻射 16 2.4.2 黑體輻射 17 2.5 熱效益計算 18 第三章 選擇性吸收膜之數值模擬 21 3.1 幾何模型建立與文獻比對 21 3.2 參數分析 24 第四章 實驗製程與設備 27 4.1 實驗製程 27 4.2 實驗設備 30 4.2.1 放射率量測儀器 30 4.2.2 直流磁控濺鍍系統 30 4.2.3 共濺鍍機 31 4.2.4 表面粗度儀 31 4.2.5 橢圓偏光儀 32 4.2.6 原子力顯微鏡 32 4.2.7 分光光譜儀 33 4.2.8 傅立葉轉換紅外光光譜儀 34 4.2.9 歐傑電子能譜儀 34 第五章 結果與討論 36 5.1 實驗結果與討論 36 5.1.1 不同方式量測不鏽鋼基板之熱發散率比較 36 5.1.2 SS/W之熱發散率比較 36 5.1.3 SS/W/3A/Al2O3之平均吸收率( )與其在 黑體輻射 之熱發散率( )比較 37 5.1.4 SS/W(832nm)/3A/Al2O3在不同溫度下黑體輻射之熱發散 率( )比較 38 5.1.5 塗層分析 39 5.2 實驗結果與模擬分析之比對 39 5.3 吸收膜之應用 40 第六章 結埨 42 參考文獻 44

    [1] Agnihotri, O. and B.K. Gupta, Solar selective surfaces. 1981: p.91.
    [2] Seraphin, B.O., Optical properties of solids: new developments. 1976: North-Holland.
    [3] Allred, D., Chemically vapor-deposited ZrB2 as a selective solar absorber.
    [4] Donnadieu, A. and B. Seraphin, Optical performance of absorber-reflector combinations for photothermal solar energy conversion. JOSA, 1978. 68(3): p.292-297.
    [5] Williams, D., T. Lappin, and J. Duffie, Selective radiation properties of particulate coatings. Journal of Engineering for Power, 1963. 85(3): p. 213-220.
    [6] 史月艷,那鸿悦, 太陽光譜選擇性吸收膜系設計、製備及測評 . 2009: 清華大學出版社.
    [7] Craighead, H., et al., Graded‐index Pt‐Al2O3 composite solar absorbers. Applied Physics Letters, 1981. 39(1): p. 29-31.
    [8] Zhang, Q.-C. and D.R. Mills, High solar performance selective surface using bi-sublayer cermet film structures. Solar energy materials and solar cells, 1992. 27(3): p. 273-290.
    [9] Zhang, Q.-C. and Y. Shen, High performance W–AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering. Solar Energy Materials and Solar Cells, 2004. 81(1): p. 25-37.
    [10] Lanxner, M. and Z. Elgat. Solar selective absorber coating for high service temperatures, produced by plasma sputtering. International Society for Optics and Photonics, 1990. 90: p. 12-16.
    [11] Sibin, K., S. John, and H.C. Barshilia, Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications. Solar Energy Materials and Solar Cells, 2015. 133: p. 1-7.
    [12] ASTM. Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra. Available from: http://rredc.nrel.gov/solar/spectra/am1.5/.
    [13] ÜÖè, L.Z. and X. Diao, New criterion for optimization of solar selective absorber coatings. Chinese Optics Letters, 2013.
    [14] Palik, E.D., Handbook of optical constants of solids. Vol. 3. 1998: Academic press.
    [15] Heinzel, A., et al., Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000. 47(13): p. 2399-2419.
    [16] Sai, H., et al., Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar energy materials and solar cells, 2003. 79(1): p. 35-49.
    [17] Toon, O.B., J.B. Pollack, and B.N. Khare, The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride. Journal of Geophysical research, 1976. 81(33): p. 5733-5748.
    [18] Gremion, C., et al., Design, properties and degradation mechanisms
    of Pt-Al2O3 multilayer coating for high temperature solar thermal applications. Surface and Coatings Technology, 2015. 284: p. 31-37.
    [19] Lee, C., Thin-Film Optics and Coating Technology (薄膜光學與鍍膜技術). 2001, Taipei: Yi Hsien Publishing Company.
    [20] Lienhard, J.H., A heat transfer textbook. 2013: Courier Corporation.
    [21] Li, Y.-C.M., Improved uncertainty for a modified commercial emissometer. Solar energy materials and solar cells, 2007. 91(8): p. 735-739.
    [22] Li, P., et al., Large‐Scale Nanophotonic Solar Selective Absorbers for High‐Efficiency Solar Thermal Energy Conversion. Advanced Materials, 2015. 27(31): p. 4585-4591.
    [23] Jahan, M.P., Y. San Wong, and M. Rahman, A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). The International Journal of Advanced Manufacturing Technology, 2010. 46(9): p. 1145-1160.

    下載圖示 校內:2018-06-23公開
    校外:2018-06-23公開
    QR CODE