簡易檢索 / 詳目顯示

研究生: 王建智
Wang, Jian-Jhih
論文名稱: 固-氣相處理修飾方法於大幅改善鈣鈦礦發光二極體之研究
Gas-solid treatment to markedly advance the performance of hybrid perovskite-based light-emitting diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機鈣鈦礦發光二極體氧化鎳表面修飾
外文關鍵詞: hybrid light-emitting diodes, perovskite, methylamine, CH3NH3PbBr3, nickel oxide
相關次數: 點閱:103下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們提出一個簡易地可提升鈣鈦礦發光二極體的改善方法,以綠光發光材料CH3NH3PbBr3為例,使用甲胺氣體修飾鈣鈦礦薄膜製作出高亮度的有機鈣鈦礦發光二極體元件,其最大亮度可達70,000 cd/m2且發光效率可達15 cd/A。最大亮度遠遠超過目前所報導的鈣鈦礦發光二極體之研究,而最大發光效率也有前幾名的表現。
    首先將氧化鎳(NiOx)運用於鈣鈦礦發光二極體中的P型電極界面層,取代了電極界面層PEDOT:PSS以減少電極間電荷轉移所造成的放光抑制現象。此外,我們使用固氣相反應修飾方法於改善鈣鈦礦薄膜之缺陷、晶向及光致發光,進而大幅提升鈣鈦礦發光二極體之亮度及發光效率。
    元件結構為glass / ITO / NiOx /經甲胺氣體(methylamine,MA)修飾之CH3NH3PbBr3 / TPBI / LiF /Al ,實驗結果顯示經甲胺修飾80秒的鈣鈦礦發光二極體在電壓為8.5V時,其亮度(brightness)為64,900 cd/m2、發光效率(luminous efficiency, LE)為15.9 cd/A、電流密度(current density)為407.65 mA/cm2,與未經甲胺修飾的鈣鈦礦發光二極體相比亮度有將近130倍的提升、發光效率有將近200倍的提升。

    This work presents the efficient methylammonium lead bromide (CH3NH3PbBr3)-based hybrid light-emitting diodes (LED) of a brightness >70,000 cd/m2 and the luminous efficiency (LE) >15 cd/A. Firstly, the commonly used poly(3,4-ethylenedioxythiophene) poly(styrene¬-sulfonate) (PEDOT:PSS) hole transport layer (HTL) has to be replaced by a more suitable electrode interlayer, such as a compact nickel oxide (NiOx) layer in this study. CH3NH3PbBr3 forms a shiny film on glass/ITO/NiOx substrate and to some extent NiOx layer blocks the transport of the electrons in CH3NH3PbBr3 reaching the electrodes to increase the probabilities for the recombination of opposite charge carriers in the active layer. Secondly, we successfully apply a moderate gas-solid reaction to treat CH3NH3PbBr3 film. The methylamine (MA) treatment significantly advances the quality, the crystallinity, photoluminescence of the perovskite film and endorses a more than 100-fold increase in brightness and LE as compared to those of the controlled cell without MA treatment. A hybrid perovksite-based LED with a configuration of glass/indium-tin-oxide/NiOx/MA treated CH3NH3PbBr3/TPBI/LiF/Al, exhibits a peak LE of 15.9 cd/A biased at 8.5 V, 407.65 mA/cm2, 64,900 cd/m2, posing a feasible gas-solid interaction to largely improve the performance and the design of the highly bright and efficient perovskite-based LEDs for real applications.

    摘要 I Extended Abstract II 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件的發展 3 1-3 研究動機與大綱 9 1-3-1 研究動機 9 1-3-2 論文大綱 10 第二章 鈣鈦礦發光二極體發展 11 2-1 前言 11 2-2 有機電激發光元件的結構及操作原理 13 2-3 鈣鈦礦發光二極體重要的文獻回顧 18 2-4 鈣鈦礦太陽能電池的成膜性改善 24 2-5 本章結論 27 第三章 元件製作與實驗步驟 30 3-1 前言 30 3-2 鈣鈦礦發光二極體的製備過程 31 3-2-1 ITO基板圖案化及清潔 31 3-2-2 ITO基板清洗 34 3-2-3 電洞傳輸層製作 34 3-2-4 主動層製作 35 3-2-5 主動層修飾方法 37 3-2-6 電子傳輸層製作 38 3-2-7 陰極製作 39 3-3 元件光電特性量測 41 3-3-1 電流-亮度-電壓量測系統 41 3-3-2 掃描式電子顯微鏡 41 3-3-3 光致發光光譜儀 42 3-3-4 X光繞射儀 43 3-4 本章結論 44 第四章 改善鈣鈦礦發光二極體之研究 45 4-1 前言 45 4-2 P型電極界面層對於鈣鈦礦薄膜及發光二極體的影響 47 4-2-1 不同P型電極界面層之光致發光分析 47 4-2-2 不同P型電極界面層之接觸角分析 51 4-2-3 不同P型電極界面層的鈣鈦礦發光二極體之電性量測 52 4-3 固氣相反應修飾方式對鈣鈦礦薄膜及發光二極體的影響 55 4-3-1 固氣相反應修飾方式下鈣鈦礦薄膜之形貌分析 56 4-3-2 固氣相反應修飾方式下鈣鈦礦薄膜之結晶程度分析 59 4-3-3 固氣相反應修飾的鈣鈦礦發光二極體之電性量測 63 4-3-4 固氣相反應修飾方式下鈣鈦礦薄膜之光學分析 68 4-3-5 固氣相反應修飾的鈣鈦礦發光二極體之穩定度量測 72 4-4 本章結論 74 第五章 總結與未來工作 75 5-1 總結 75 5-2 未來工作展望 77 參考文獻 80

    [1] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
    [2] S.R. Forrest, Org. Electronics 2003, 4, 45.
    [3] M. Pope, H. P. Kallmann, P. J. Magnante, J. Chem. Phys. 1963, 38, 2042.
    [4] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 57, 913.
    [5] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [6] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed 2 June 2015)
    [7] J. C. Frankel, Science 2013, 342, 1438.
    [8] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications,” DOI: 10.1002/9781118998977.ch13.
    [9] M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1994, 65, 676.
    [10] K. Chondroudis, D. B. Mitzi, Chem. Mater. 1999, 11, 3028.
    [11] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
    [12] Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W.
    Lee, Adv. Mater. 2015, 27, 1248.
    [13] R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M.-L. Lai, Z.-K. Tan, N. C.
    Greenham, J. L. MacManus-Driscoll, R. H. Friend, D. Credgington, Adv. Mater.
    2015, 27, 1414.
    [14] J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311.
    [15] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z.-K. Tan, M. L. Lai, J. L. MacManus-Driscoll, N. C. Greenham, R. H. Friend, J. Phys. Chem. Lett. 2015, 6, 446.
    [16] A. Sadhanala, A. Kumar, S. Pathak, A. Rao, U. Steiner, N. C. Greenham, H. J. Snaith, R. H. Friend, Adv. Electron. Mater. 2015, 1, 1500008.
    [17] G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
    [18] O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, J. Phys. Chem.
    Lett. 2015, 6, 1883.
    [19] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, R. H. Friend, Nano Lett. 2015, 15, 6095.
    [20] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
    [21] Y. Zhao, K. Zhu, Chem. Commun. 2014, 50, 1605.
    [22] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, Angew. Chem. Int. Ed. 2015, 54, 9705.
    [23] Y. Zhou, O. S. Game, S. Pang, N. P. Padture, J. Phys. Chem. Lett. 2015, 6, 4827.
    [24] S. M. Jain, B. Philippe, E. M. J. Johansson, B.-W. Park, H. Rensmo, T. Edvinsson, G. Boschloo, J. Mater. Chem. A 2016, 4, 2630.
    [25] T. Zhao, S. T. Williams, C.-C. Chueh, D. W. deQuilettes, P.-W. Liang, D. S. Ginger, A. K.-Y. Jen, RSC Adv. 2016, 6, 27475.
    [26] S. Pang, Y. Zhou, Z. Wang, M. Yang, A. R. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, J. Am. Chem. Soc. 2016, 138, 750.
    [27] S. R. Raga, L. K. Ono, Y. Qi, J. Mater. Chem. A 2016, 4, 2494.
    [28] T. Zhang, N. Guo, G. Li, X. Qian, L. Li, Y. Zhao, J. Mater. Chem. A 2016, 4, 3245.
    [29] T. Liu, F. Jiang, J. Tong, F. Qin, W. Meng, Y. Jiang, Z. Li, Y. Zhou, J. Mater. Chem. A, 2016, 4, 4305.
    [30] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15, 247.
    [31] J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, Y.-J. Hsu, Adv. Mater. 2014, 26, 4107.
    [32] W.-C. Lai, K.-W. Lin, T.-F. Guo, J. Lee, IEEE Trans. Electron Devices 2015, 62, 1590.
    [33] W.-C. Lai, K.-W. Lin, Y.-T. Wang, T.-Y. Chiang, P. Chen, T.-F. Guo, Adv. Mater. 2016, 28, 3290.
    [34] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, DOI: 10.1002/adma.201600669.
    [35] J. C. Yu, D. W. Kim, E. D. Jung, J. H. Park, A.-Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, Adv. Mater. 2016, DOI 10.1002/adma.201601105.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE