| 研究生: |
王建智 Wang, Jian-Jhih |
|---|---|
| 論文名稱: |
固-氣相處理修飾方法於大幅改善鈣鈦礦發光二極體之研究 Gas-solid treatment to markedly advance the performance of hybrid perovskite-based light-emitting diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 有機鈣鈦礦發光二極體 、氧化鎳 、表面修飾 |
| 外文關鍵詞: | hybrid light-emitting diodes, perovskite, methylamine, CH3NH3PbBr3, nickel oxide |
| 相關次數: | 點閱:103 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們提出一個簡易地可提升鈣鈦礦發光二極體的改善方法,以綠光發光材料CH3NH3PbBr3為例,使用甲胺氣體修飾鈣鈦礦薄膜製作出高亮度的有機鈣鈦礦發光二極體元件,其最大亮度可達70,000 cd/m2且發光效率可達15 cd/A。最大亮度遠遠超過目前所報導的鈣鈦礦發光二極體之研究,而最大發光效率也有前幾名的表現。
首先將氧化鎳(NiOx)運用於鈣鈦礦發光二極體中的P型電極界面層,取代了電極界面層PEDOT:PSS以減少電極間電荷轉移所造成的放光抑制現象。此外,我們使用固氣相反應修飾方法於改善鈣鈦礦薄膜之缺陷、晶向及光致發光,進而大幅提升鈣鈦礦發光二極體之亮度及發光效率。
元件結構為glass / ITO / NiOx /經甲胺氣體(methylamine,MA)修飾之CH3NH3PbBr3 / TPBI / LiF /Al ,實驗結果顯示經甲胺修飾80秒的鈣鈦礦發光二極體在電壓為8.5V時,其亮度(brightness)為64,900 cd/m2、發光效率(luminous efficiency, LE)為15.9 cd/A、電流密度(current density)為407.65 mA/cm2,與未經甲胺修飾的鈣鈦礦發光二極體相比亮度有將近130倍的提升、發光效率有將近200倍的提升。
This work presents the efficient methylammonium lead bromide (CH3NH3PbBr3)-based hybrid light-emitting diodes (LED) of a brightness >70,000 cd/m2 and the luminous efficiency (LE) >15 cd/A. Firstly, the commonly used poly(3,4-ethylenedioxythiophene) poly(styrene¬-sulfonate) (PEDOT:PSS) hole transport layer (HTL) has to be replaced by a more suitable electrode interlayer, such as a compact nickel oxide (NiOx) layer in this study. CH3NH3PbBr3 forms a shiny film on glass/ITO/NiOx substrate and to some extent NiOx layer blocks the transport of the electrons in CH3NH3PbBr3 reaching the electrodes to increase the probabilities for the recombination of opposite charge carriers in the active layer. Secondly, we successfully apply a moderate gas-solid reaction to treat CH3NH3PbBr3 film. The methylamine (MA) treatment significantly advances the quality, the crystallinity, photoluminescence of the perovskite film and endorses a more than 100-fold increase in brightness and LE as compared to those of the controlled cell without MA treatment. A hybrid perovksite-based LED with a configuration of glass/indium-tin-oxide/NiOx/MA treated CH3NH3PbBr3/TPBI/LiF/Al, exhibits a peak LE of 15.9 cd/A biased at 8.5 V, 407.65 mA/cm2, 64,900 cd/m2, posing a feasible gas-solid interaction to largely improve the performance and the design of the highly bright and efficient perovskite-based LEDs for real applications.
[1] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
[2] S.R. Forrest, Org. Electronics 2003, 4, 45.
[3] M. Pope, H. P. Kallmann, P. J. Magnante, J. Chem. Phys. 1963, 38, 2042.
[4] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 57, 913.
[5] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
[6] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed 2 June 2015)
[7] J. C. Frankel, Science 2013, 342, 1438.
[8] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications,” DOI: 10.1002/9781118998977.ch13.
[9] M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1994, 65, 676.
[10] K. Chondroudis, D. B. Mitzi, Chem. Mater. 1999, 11, 3028.
[11] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
[12] Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W.
Lee, Adv. Mater. 2015, 27, 1248.
[13] R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M.-L. Lai, Z.-K. Tan, N. C.
Greenham, J. L. MacManus-Driscoll, R. H. Friend, D. Credgington, Adv. Mater.
2015, 27, 1414.
[14] J. Wang, N. Wang, Y. Jin, J. Si, Z.-K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, Adv. Mater. 2015, 27, 2311.
[15] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z.-K. Tan, M. L. Lai, J. L. MacManus-Driscoll, N. C. Greenham, R. H. Friend, J. Phys. Chem. Lett. 2015, 6, 446.
[16] A. Sadhanala, A. Kumar, S. Pathak, A. Rao, U. Steiner, N. C. Greenham, H. J. Snaith, R. H. Friend, Adv. Electron. Mater. 2015, 1, 1500008.
[17] G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
[18] O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, J. Phys. Chem.
Lett. 2015, 6, 1883.
[19] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, R. H. Friend, Nano Lett. 2015, 15, 6095.
[20] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
[21] Y. Zhao, K. Zhu, Chem. Commun. 2014, 50, 1605.
[22] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, Angew. Chem. Int. Ed. 2015, 54, 9705.
[23] Y. Zhou, O. S. Game, S. Pang, N. P. Padture, J. Phys. Chem. Lett. 2015, 6, 4827.
[24] S. M. Jain, B. Philippe, E. M. J. Johansson, B.-W. Park, H. Rensmo, T. Edvinsson, G. Boschloo, J. Mater. Chem. A 2016, 4, 2630.
[25] T. Zhao, S. T. Williams, C.-C. Chueh, D. W. deQuilettes, P.-W. Liang, D. S. Ginger, A. K.-Y. Jen, RSC Adv. 2016, 6, 27475.
[26] S. Pang, Y. Zhou, Z. Wang, M. Yang, A. R. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, J. Am. Chem. Soc. 2016, 138, 750.
[27] S. R. Raga, L. K. Ono, Y. Qi, J. Mater. Chem. A 2016, 4, 2494.
[28] T. Zhang, N. Guo, G. Li, X. Qian, L. Li, Y. Zhao, J. Mater. Chem. A 2016, 4, 3245.
[29] T. Liu, F. Jiang, J. Tong, F. Qin, W. Meng, Y. Jiang, Z. Li, Y. Zhou, J. Mater. Chem. A, 2016, 4, 4305.
[30] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15, 247.
[31] J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, Y.-J. Hsu, Adv. Mater. 2014, 26, 4107.
[32] W.-C. Lai, K.-W. Lin, T.-F. Guo, J. Lee, IEEE Trans. Electron Devices 2015, 62, 1590.
[33] W.-C. Lai, K.-W. Lin, Y.-T. Wang, T.-Y. Chiang, P. Chen, T.-F. Guo, Adv. Mater. 2016, 28, 3290.
[34] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, DOI: 10.1002/adma.201600669.
[35] J. C. Yu, D. W. Kim, E. D. Jung, J. H. Park, A.-Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, Adv. Mater. 2016, DOI 10.1002/adma.201601105.