| 研究生: |
黃允楷 Huang, Yun-Kai |
|---|---|
| 論文名稱: |
以非平衡態分子動力學探討不同效應對晶態氮化矽薄膜的熱傳導係數影響 Investigating the Impact of Various Effects on the Thermal Conductivity of Crystalline Silicon Nitride Thin Films Using Non-Equilibrium Molecular Dynamics |
| 指導教授: |
温昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 非平衡態分子動力學 、晶態氮化矽薄膜 、熱傳導係數 、聲子狀態密度 |
| 外文關鍵詞: | Non-equilibrium molecular dynamics, crystalline silicon nitride thin film, thermal conductivity, phonon density of state |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶態氮化矽具備優異的熱穩定性與機械強度,廣泛應用於高溫電子元件、先進封裝與光電系統中,為具發展潛力的奈米熱傳材料。然而,當材料尺度縮小至奈米等級,其熱傳導行為會受到聲子的邊界散射、缺陷與晶向排列等因素影響,這些因素成為探討薄膜熱傳不可忽視的一環。
本研究運用 LAMMPS 分子動力學軟體,以非平衡態分子動力學模擬方法為基礎,針對 α-Si₃N₄ 與 β-Si₃N₄ 兩種晶態氮化矽薄膜,深入探討其熱傳導係數受尺度效應、溫度效應與空位缺陷效應之影響,並藉由聲子狀態密度進行分析,理解上述效應如何改變聲子行為並導致熱傳能力下降。
模擬中建立不同厚度、方向與缺陷率的模型,並使用固定邊界條件與局部熱浴法來穩定建立溫度梯度,再透過傅立葉定律計算出熱傳導係數。研究結果發現在任何條件下 β-Si₃N₄ 的熱傳導係數皆高於 α-Si₃N₄。當薄膜厚度上升時,熱傳導係數會隨之增加,展現由彈道型逐漸轉為擴散型的傳輸行為;當溫度升高時,聲子散射加劇導致熱傳導係數下降;當引入空位缺陷後,晶格週期性被破壞,聲子局域化現象增強,熱傳導效率大幅下滑。
綜合上述,本研究成功建構一套適用於晶態氮化矽薄膜之熱傳模擬流程,釐清不同效應對其熱傳行為的影響機制,並為未來氮化矽薄膜材料設計、熱管理提供理論依據與模擬基準。
This study investigates the thermal transport properties of crystalline silicon nitride thin films (α-Si₃N₄ and β-Si₃N₄) using non-equilibrium molecular dynamics simulations performed with LAMMPS. The objective is to understand how film thickness, temperature, and vacancy defects affect thermal conductivity at the nanoscale, where phonon-boundary scattering, lattice defects, and crystal orientation become significant.
Simulation models with varying thicknesses, crystallographic orientations, and defect concentrations were constructed. Fixed boundary conditions and localized thermostats were applied to create steady temperature gradients. Thermal conductivity was calculated using Fourier’s law, and phonon density of states analyses were conducted to examine phonon behavior.
Results show that β-Si₃N₄ consistently exhibits higher thermal conductivity than α-Si₃N₄ under all conditions. An increase in film thickness leads to higher thermal conductivity, indicating a transition from ballistic to diffusive transport. Thermal conductivity decreases with rising temperature due to enhanced phonon scattering. Vacancy defects significantly reduce thermal transport efficiency by disrupting lattice periodicity and promoting phonon localization.
In summary, this work establishes a robust simulation framework for evaluating thermal transport in silicon nitride thin films. It provides theoretical insight into the mechanisms affecting heat conduction and offers a foundation for the design and thermal management of nitride-based nanoscale materials.
[1] D. Hardie and K. H. Jack, “Crystal Structures of Silicon Nitride,” Nature, vol. 180, no. 4581, pp. 332–333, 1957.
[2] S. Hampshire, “Silicon nitride ceramics – review of structure, processing and properties,” J. Achiev. Mater. Manuf. Eng., vol. 24, no. 1, pp. 43–50, 2007.
[3] M. Yashima, Y. Ando, and Y. Tabira, “Crystal structure and electron density of α-silicon nitride: experimental and theoretical evidence for the covalent bonding and charge transfer,” J. Phys. Chem. B, vol. 111, no. 14, pp. 3609–3613, 2007.
[4] F. L. Riley, “Silicon nitride and related materials,” J. Am. Ceram. Soc., vol. 83, no. 2, pp. 245–265, 2000.
[5] X. Zhu, Y. Zhou, and K. Hirao, “Post-densification behavior of reaction-bonded silicon nitride (RBSN): Effect of various characteristics of RBSN,” Journal of Materials Science, vol. 39, pp. 5785–5797, 2004.
[6] Y. Sato, M. Mishima, and M. Ueki, “Microstructure and mechanical properties of hot pressed silicon nitride ceramics,” Advanced Materials '93: Ceramics, Powders, Corrosion and Advanced Processing, vol. 14A, pp. 883–886, 1994.
[7] I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto, and M. Koizumi, “Hot isostatic press sintering and properties of silicon nitride without additives,” J. Am. Ceram. Soc., vol. 72, no. 9, pp. 1656–1660, 1989.
[8] R. Tu, Z. Liu, Q. Xu, S. Zhang, Q. Li, X. Zhang, M. L. Kosinova, T. Goto, “High-speed deposition of silicon nitride thick films via halide laser chemical vapor deposition,” J. Eur. Ceram. Soc., vol. 43, no. 12, pp. 5214–5222, 2023.
[9] W.-C. Chen, S. Chen, T.-Y. Yu, J. Su, H.-P. Chen, Y.-W. Lin, C.-P. Cheng, “Growth of Si3N4 thin films on Si(111) surface by RF-N2 plasma nitriding,” Coatings, vol. 11, no. 1, pp. 1–8, 2021.
[10] Y. Suda, K. Ebihara, K. Baba, H. Abe, and A. M. Grishin, “Crystalline silicon nitride thin films grown by pulsed YAG laser deposition,” Nanostructured Mater., vol. 12, no. 1, pp. 391–394, 1999.
[11] E. S. Barrera-Mendivelso and A. Rodríguez-Gómez, “Thin films of silicon nitride deposited at room temperature by non-reactive magnetron sputtering: radiofrequency power and deposition time influence on the formation of α-Si3N4 and its optical properties,” Front. Phys., vol. 11, 2023.
[12] Z. Gan, C. Wang, and Z. Chen, “Material structure and mechanical properties of silicon nitride and silicon oxynitride thin films deposited by plasma enhanced chemical vapor deposition,” Surfaces, vol. 1, no. 1, pp. 59–72, 2018.
[13] S. Zeng, C. Tang, H. Hong, F. Yuan, Y. Li, Y. Wang, L. Kong, J. Sun, M. Zhu, T. Deng, “A novel high-temperature pressure sensor based on graphene coated by Si3N4,” IEEE Sens. J., vol. 23, no. 3, pp. 2008–2013, 2023.
[14] W. Stutius and W. Streifer, “Silicon nitride films on silicon for optical waveguides,” Applied Optics, vol. 16, no. 12, pp. 3218–3222, 1977.
[15] B. J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,” J. Chem. Phys., vol. 27, no. 5, pp. 1208–1209, 1957.
[16] A. Rahman, “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, no. 2A, pp. A405–A411, 1964.
[17] F. H. Stillinger and A. Rahman, “Improved simulation of liquid water by molecular dynamics,” J. Chem. Phys., vol. 60, no. 4, pp. 1545–1557, 1974.
[18] M. Levitt and S. Lifson, “Refinement of protein conformations using a macromolecular energy minimization procedure,” J. Mol. Biol., vol. 46, no. 2, pp. 269–279, 1969.
[19] M. J. Gillan and M. Dixon, “The calculation of thermal conductivities by perturbed molecular dynamics simulation,” J. Phys. C Solid State Phys., vol. 16, no. 5, p. 869, 1983.
[20] R. D. Mountain and R. A. MacDonald, “Thermal conductivity of crystals: a molecular-dynamics study of heat flow in a two-dimensional crystal,” Phys. Rev. B, vol. 28, no. 6, pp. 3022–3025, 1983.
[21] S. Kotake and S. Wakuri, “Molecular dynamics study of heat conduction in solid materials,” JSME Int. J. Ser. B, vol. 37, no. 1, pp. 103–108, 1994.
[22] B. Hafskjold and S. K. Ratkje, “Criteria for local equilibrium in a system with transport of heat and mass,” J. Stat. Phys., vol. 78, no. 1, pp. 463–494, 1995.
[23] H. Kaburaki, J. Li, and S. Yip, “Thermal conductivity of solid argon by classical molecular dynamics,” MRS Proc., vol. 538, p. 503, 1998.
[24] T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee, and C.-W. Chang, “Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires,” Nat. Nanotechnol., vol. 8, no. 7, pp. 534–538, 2013.
[25] J. Lee, J. Lim, and P. Yang, “Ballistic phonon transport in holey silicon,” Nano Lett., vol. 15, no. 5, pp. 3273–3279, 2015.
[26] B. Latour and Y. Chalopin, “Distinguishing between spatial coherence and temporal coherence of phonons,” Phys. Rev. B, vol. 95, no. 21, p. 214310, 2017.
[27] L. J. Sham and J. M. Ziman, “The electron-phonon interaction,” Adv. Phys., vol. 12, no. 46, pp. 155–258, 1963.
[28] S. Shin, Q. Wang, J. Luo, and R. Chen, “Advanced materials for high-temperature thermal transport,” Adv. Funct. Mater., vol. 30, no. 8, p. 1904815, 2020.
[29] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev., vol. 94, no. 3, pp. 511–525, 1954.
[30] R. F. Pawula, “Approximation of the linear boltzmann equation by the fokker-planck equation,” Phys. Rev., vol. 162, no. 1, pp. 186–188, 1967.
[31] F. X. Alvarez and D. Jou, “Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes,” Appl. Phys. Lett., vol. 90, no. 8, p. 83109, 2007.
[32] C.-W. Wu and C.-D. Wen, "The Study on Thermal Conductivity of Perfect and Defective Silicon Carbide Nanofilms and the Influence of Phonon Transport Behavior Using Non-Equilibrium Molecular Dynamics," Degree Thesis of Department of Mechanical Engineering, National Cheng Kung University, pp. 1-135, 2020.
[33] G. Chen, “Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures,” J. Heat Transf., vol. 119, no. 2, pp. 220–229, 1997.
[34] Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, “In-plane lattice thermal conductivities of multilayer graphene films,” Carbon, vol. 49, no. 8, pp. 2653–2658, 2011.
[35] G. L. Harris, Properties of silicon carbide (no. 13). Iet, 1995.
[36] M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, “Phonon-boundary scattering in thin silicon layers,” Appl. Phys. Lett., vol. 71, no. 13, pp. 1798–1800, 1997.
[37] C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev., vol. 134, no. 4A, pp. A1058–A1069, 1964.
[38] G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids, vol. 48, no. 7, pp. 641-647, 1987.
[39] C. Ren, Z. Xu, W. Zhang, Y. Li, Z. Zhu, and P. Huai, “Theoretical study of heat conduction in carbon nanotube hetero-junctions,” Phys. Lett. A, vol. 374, no. 17, pp. 1860–1865, 2010.
[40] X. Zhang and Z. Sun, “Effects of vacancy structural defects on the thermal conductivity of silicon thin films,” J. Semicond., vol. 32, no. 5, p. 53002, 2011.
[41] B. Wang, X. Yan, H. Yan, and Y. Cai, “Strong reduction of thermal conductivity of WSe2 with introduction of atomic defects,” Nanotechnology, vol. 33, no. 27, p. 275706, 2022.
[42] N. Galamba, C. A. Nieto De Castro, and J. F. Ely, “Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations,” J. Chem. Phys., vol. 120, no. 18, pp. 8676–8682, 2004.
[43] T. Arima, S. Yamasaki, Y. Inagaki, and K. Idemitsu, “Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000K,” J. Alloys Compd., vol. 400, no. 1, pp. 43–50, 2005.
[44] T. Ikeshoji and B. Hafskjold, “Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface,” Mol. Phys., vol. 81, no. 2, pp. 251–261, 1994.
[45] B. D. Todd and P. J. and Daivis, “Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications,” Mol. Simul., vol. 33, no. 3, pp. 189–229, 2007.
[46] J. E. Jones, “On the determination of molecular fields. II. From the equation of state of a gas,” Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol. 106, no. 738, pp. 463–477, 1924.
[47] J. E. Lennard-Jones, “Cohesion,” Proc. Phys. Soc., vol. 43, no. 5, p. 461, 1931.
[48] P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Phys. Rev., vol. 34, no. 1, pp. 57–64, 1929.
[49] M. S. Daw and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, vol. 29, no. 12, pp. 6443–6453, 1984.
[50] J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Phys. Rev. B, vol. 37, no. 12, pp. 6991–7000, 1988.
[51] M. Ippolito and S. Meloni, “Atomistic structure of amorphous silicon nitride from classical molecular dynamics simulations,” Phys. Rev. B, vol. 83, no. 16, p. 165209, 2011.
[52] X. Yang, B. Tian, M. Jian, M. Wu, W. Li, J. Jiang, Z. Guo, L. Yang, “Molecular dynamics simulation of uniaxial stretching for silicon nitride deposited by PECVD,” Appl. Surf. Sci., vol. 682, p. 161696, 2025.
[53] J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, “Molecular dynamics simulation: elementary methods,” Comput. Phys., vol. 7, no. 6, p. 625, 1993.
[54] J. W. Gibbs, “On the equilibrium of heterogeneous substances,” Am. J. Sci., vol. s3-16, no. 96, pp. 441–458, 1878.
[55] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” J. Chem. Phys., vol. 126, no. 1, p. 14101, 2007.
[56] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, no. 8, pp. 3684–3690, 1984.
[57] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, no. 1, pp. 511–519, 1984.
[58] W. G. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Phys. Rev. A, vol. 31, no. 3, pp. 1695–1697, 1985.
[59] S. A. Adelman and J. D. Doll, “Generalized langevin equation approach for atom/solid‐surface scattering: general formulation for classical scattering off harmonic solids,” J. Chem. Phys., vol. 64, no. 6, pp. 2375–2388, 1976.
[60] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: a new molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182–7190, 1981.
[61] H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” J. Chem. Phys., vol. 72, no. 4, pp. 2384–2393, 1980.
[62] F. Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity,” J. Chem. Phys., vol. 106, no. 14, pp. 6082–6085, 1997.
[63] L. Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of lennard-jones molecules,” Phys. Rev., vol. 159, no. 1, pp. 98–103, 1967.
[64] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters,” J. Chem. Phys., vol. 76, no. 1, pp. 637–649, 1982.
[65] C. W. Gear, “The automatic integration of ordinary differential equations,” Commun ACM, vol. 14, no. 3, pp. 176–179, 1971.
[66] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995.
[67] N. Hirosaki, S. Ogata, C. Kocer, H. Kitagawa, and Y. Nakamura, “Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α- and β- Si3N4,” Phys. Rev. B, vol. 65, no. 13, p. 134110, 2002.