| 研究生: |
李榮翰 Li, Jung-Han |
|---|---|
| 論文名稱: |
微流道修改與入口流率對光流體聚光器聚焦的影響 Influence of mircochannel modification and inlet flow rates on the focusing of optofluidic beam condenser |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 光流體力學 、聚光器 、折射率梯度 、田口法 |
| 外文關鍵詞: | optofluidics, beam condenser, gradient refractive index, Taguchi method |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討一具有三維入口流道與主流道側邊凹槽的微光流體聚光器,它會使流經主流道的流體產生漸進式折射率梯度,使光線在垂直光線主要行進方向的截面上往中間聚焦以改進聚焦效果。本研究將氯化鈣水溶液(即初始溶液,做為核心流體)與去離子水(即水,做為包覆流體)混合成工作流體,將流體由左右對稱的四個入口注入流道內,其中左右兩個入口為去離子水入口(B入口),包覆中間深度較淺的氯化鈣水溶液入口(A入口),使注入流體時低折射率的流體能包覆高折射率的流體,形成中間高左右兩側低的折射率分佈,使光線通過主流道時會朝中間高折射率區域前進,達到聚光的效果,並可以藉由控制入口流率的方式,改變流道內的折射率分佈,來調整光線的聚焦位置。本研究使用數值模擬軟體ANSYS Fluent模擬流道內的速度場及濃度場,再以自行寫作的C++程式進行光線追跡,模擬光線經過流道時的軌跡。接著對流道的幾何參數與流率參數進行最佳化,其中選定的幾何參數如下:主流道長度 、主流道側邊凹槽寬度 及A入口深度h,流率參數如下:A入口流率 、A與B入口的流率比 ,先固定流率參數,以田口法尋找幾何參數的最佳參數組合,再固定幾何參數,以全因子實驗規劃尋找入口流率參數的最佳參數組合。本研究使用微影製程製作微聚光器,選用最佳的參數組合進行實驗,用數位單眼相機連接顯微轉接鏡與可變焦顯微觀察系統,由流道上方觀察及拍攝光線在聚光器中的光線軌跡,比較實驗結果與數值模擬的結果相近,得知模擬可靠。由模擬結果可知:A入口流率會影響工作流體的擴散程度,A與B入口的流率比會影響主流道內的折射率梯度,藉由控制流率參數可以用來調整光線的聚焦位置。三維流道由於其折射率分佈亦呈現三維分佈,聚焦效果比二維流道好。
In this work, we propose and investigate a micro optofluidic beam condenser with three-dimensional (3D) inlets and side groove of main channel. Calcium chloride solution (n=1.41) and deionized water (n=1.33) are applied as the core and the cladding liquid, respectively. Two deionized water inlets lie on both sides of the calcium chloride solution inlets. The latter is shallower than the former in depth, so the cladding liquid would wrap around the core liquid to form gradient refractive index (GRIN) in the main channel. The beam passing through the main channel will converge toward both the middle vertical plane and the horizontal plane by the GRIN. Furthermore, we can adjust the inlet flow rate to change the GRIN, and so change the focus length of the beam. ANSYS Fluent and self-developed codes are used to simulate the flow field and the light propagation, respectively. Taguchi method and full-factorial experiments are used to optimize different geometry and flow parameters to enhance the performance. The validity of simulations is confirmed by the experiment. We can see that the 3D structure of the beam condenser improves the performance, and by adjusting the flow rate parameters, we may adjust the focus of beam.
[1] V. R. Horowitz, D. D. Awschalon, S. Pennathur, “Optofluidics: field or technique?” Lab on a Chip, vol. 8, no.11, pp. 1856-1863, 2008.
[2] G. Zheng, S. A. Lee, S. Yang, C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab on a Chip, vol. 10, no. 22, pp. 3125-3129, 2010.
[3] H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Analytical Chemistry, vol .83, no. 17, pp. 6641-6647, 2011.
[4] A. Schap, Y. Bellouard, T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomedical Optics Express, vol. 2, no. 3 , pp. 658-664, 2011.
[5] C. C. Stemple, S. V. Angus, T. S. Park, J.-Y. Yoon, “Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood,” Journal of Laboratory Automation, vol. 19, no. 1, pp. 35-41, 2014.
[6] A. H. J. Yang, D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab on a Chip, vol. 10, no. 6, pp.769-774, 2010.
[7] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no. 19, pp. 3810-3815, 2012.
[8] K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Scientific Reports, vol. 4, 6378 (4 pages), 2014.
[9] D. Erickson, D. Sinton, D. Psaltis, “Optofluidics for energy applications,” Nature Photonics, vol. 5, no. 10, pp. 583-590, 2011.
[10] L. Lei, N. Wang, X .M. Zhang, Q. Tai, D. P. Tsai, H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics, vol.4, 043004 (13 pages), 2010.
[11] S. K. Tang, C. A. Stan, and G. M. Whitesides, "Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel," Lab on a Chip, vol. 8, pp. 395-401, 2008.
[12] X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. J. Juluri, T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab on a Chip, vol. 9, no. 14, pp. 2050-2058, 2009.
[13] Y. Yang, L. K. Chin, J. M. Tsai, D. P. Tsai, N. I. Zheludev, A. Q. Liu, “Transformation optofluidics for large-angle light bending and tuning,” Lab on a Chip, vol. 12, no. 19, pp. 3785-3790, 2012.
[14] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no.19, pp. 3810-3815, 2012.
[15] Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab on a Chip, vol. 16, no. 1, pp. 104-111, 2016.
[16] Z.-C. Le, X. Wu, Y.-L. Sun, Y. Du, “Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens, ”Optics Communications, vol. 395, pp. 267-274, 2017.
[17] H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab on a Chip, vol. 16, no. 9, pp. 1617-1624, 2016.
[18] L. Li, J.-H. Wang, Q.-H. Wang, S.-T. Wu, “Displaceable and focus-tunable electrowetting optofluidic lens,” Optics Express, vol. 26, no. 20, pp. 25839-25848, 2018.
[19] H. T .Zhao, Y. Zhang, P. Y. Liu, P. H. Yap, W. Ser, Q. Liu, “Chemical reaction monitoring via the light focusing in optofluidic waveguides,” Sensors and Actuators B: Chemical, vol. 280, pp. 16-23, 2019.
[20] T.-Y. Lin, “Optofluidic splitter generating large-angle and vertically condensed beams,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[21] Y.-C. Chen, “Improving splitter transmission by optimizing the shape and flow parameter of a micro optofluidic beam splitter,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.
[22] P. A. Lyons and J. F. Riley, “Diffusion coefficients for aqueous solutions of calcium chloride and cesium chloride at ,” Journal of the American Chemical Society, vol. 76, no. 20, pp. 5216-5220, 1954.
[23] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. Boca Raton, US: CRC Press, 2004.
[24] M. Born, E. Wolf, Principles of Optics, 7th ed. Cambridge, UK: Cambridge University Press, 1999.
[25] A. Sharma, D. V. Kumar, A. K. Ghatak, “Tracing rays through graded-index media - a new method,” Applied Optics, vol. 21, pp. 984-987, 1982.
[26] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19-26, 1980.
[27] S.Q. Mawlud, N.Q. Muhamad, “Theoretical and Experimental Study of a Numerical Aperture for Multimode,” Chinese Physics Letters, vol. 29, no. 11, 114217, 2012.
[28] A. Parent, M. Morin, P. Lavine, “Propagation of super-Gaussian field distributions,” Optical and Quantum Electronics, vol.24, pp.1071-1079, 1992.
[29] Neal, R. M., “Slice Sampling,” The Annals of Statistics, vol. 31, no. 3, 705-767, 2003.
[30] A. Sharma, A. K. Ghatak, “Ray tracing in gradient-index lenses: computation
of ray–surface intersection,” Applied Optics, vol. 25, no. 19, pp. 3409-3412, 1986.
[31] H.-H. Lee, Taguchi methods: Principles and Practices of Quality Design, 2nd ed. New Taipei City, Taiwan: Gau Lih Book, 2004.
[32] A. Nealen, “An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep, 2004, URL: http://www.nealen.com/projects.
[33] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,1975.
[34] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891-923, 1998.
[35] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.
[36] M. F. Modest, Radiative Heat Transfer, 3rd ed. Boston, US: Academic Press, 2013.