簡易檢索 / 詳目顯示

研究生: 李榮翰
Li, Jung-Han
論文名稱: 微流道修改與入口流率對光流體聚光器聚焦的影響
Influence of mircochannel modification and inlet flow rates on the focusing of optofluidic beam condenser
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 光流體力學聚光器折射率梯度田口法
外文關鍵詞: optofluidics, beam condenser, gradient refractive index, Taguchi method
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討一具有三維入口流道與主流道側邊凹槽的微光流體聚光器,它會使流經主流道的流體產生漸進式折射率梯度,使光線在垂直光線主要行進方向的截面上往中間聚焦以改進聚焦效果。本研究將氯化鈣水溶液(即初始溶液,做為核心流體)與去離子水(即水,做為包覆流體)混合成工作流體,將流體由左右對稱的四個入口注入流道內,其中左右兩個入口為去離子水入口(B入口),包覆中間深度較淺的氯化鈣水溶液入口(A入口),使注入流體時低折射率的流體能包覆高折射率的流體,形成中間高左右兩側低的折射率分佈,使光線通過主流道時會朝中間高折射率區域前進,達到聚光的效果,並可以藉由控制入口流率的方式,改變流道內的折射率分佈,來調整光線的聚焦位置。本研究使用數值模擬軟體ANSYS Fluent模擬流道內的速度場及濃度場,再以自行寫作的C++程式進行光線追跡,模擬光線經過流道時的軌跡。接著對流道的幾何參數與流率參數進行最佳化,其中選定的幾何參數如下:主流道長度 、主流道側邊凹槽寬度 及A入口深度h,流率參數如下:A入口流率 、A與B入口的流率比 ,先固定流率參數,以田口法尋找幾何參數的最佳參數組合,再固定幾何參數,以全因子實驗規劃尋找入口流率參數的最佳參數組合。本研究使用微影製程製作微聚光器,選用最佳的參數組合進行實驗,用數位單眼相機連接顯微轉接鏡與可變焦顯微觀察系統,由流道上方觀察及拍攝光線在聚光器中的光線軌跡,比較實驗結果與數值模擬的結果相近,得知模擬可靠。由模擬結果可知:A入口流率會影響工作流體的擴散程度,A與B入口的流率比會影響主流道內的折射率梯度,藉由控制流率參數可以用來調整光線的聚焦位置。三維流道由於其折射率分佈亦呈現三維分佈,聚焦效果比二維流道好。

    In this work, we propose and investigate a micro optofluidic beam condenser with three-dimensional (3D) inlets and side groove of main channel. Calcium chloride solution (n=1.41) and deionized water (n=1.33) are applied as the core and the cladding liquid, respectively. Two deionized water inlets lie on both sides of the calcium chloride solution inlets. The latter is shallower than the former in depth, so the cladding liquid would wrap around the core liquid to form gradient refractive index (GRIN) in the main channel. The beam passing through the main channel will converge toward both the middle vertical plane and the horizontal plane by the GRIN. Furthermore, we can adjust the inlet flow rate to change the GRIN, and so change the focus length of the beam. ANSYS Fluent and self-developed codes are used to simulate the flow field and the light propagation, respectively. Taguchi method and full-factorial experiments are used to optimize different geometry and flow parameters to enhance the performance. The validity of simulations is confirmed by the experiment. We can see that the 3D structure of the beam condenser improves the performance, and by adjusting the flow rate parameters, we may adjust the focus of beam.

    目錄 摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-3 研究動機 4 1-4 本文架構 4 第二章 微光流體聚光器設計及數值模擬 5 2-1 微光流體聚光器設計 5 2-1-1 微流道設計概念 5 2-1-2 微流道幾何形狀設計 5 2-1-3 實驗用光源系統簡介 6 2-2 流體力學模型及流場數值模擬 7 2-2-1 流場基本假設 7 2-2-2 統御方程式 8 2-2-3 邊界條件 9 2-2-4 流場數值模擬 9 2-3 數值光線追跡 11 2-3-1 統御方程式 11 2-3-2 入射光的初始位置及方向 12 2-3-3 入射光線的徑向位置 13 2-3-4計算光線與流道邊界的反射交點及反射率 14 2-4微聚光器效能評估 14 2-4-1光包加總能量的統計方法 15 2-4-2微聚光器焦距 15 2-5 微聚光器參數最佳化 15 2-5-1田口法 16 第三章 微光流體聚光器流道製作與實驗觀測 17 3-1 微光流體聚光器之微流道製作 17 3-1-1光罩(mask)設計 17 3-1-2微流道母模製作 17 3-1-3表面粗度儀量測流道母模高度與寬度 20 3-1-4微流道翻模製作 20 3-1-5微流道氧電漿貼合與管線黏合 21 3-2 實驗觀測儀器架設與量測 21 3-2-1光源設置 21 3-2-2以微量式注射幫浦注入工作流體 21 3-2-3實驗影像拍攝 22 第四章 結果與討論 23 4-1簡介 23 4-2 流體與濃度場計算之參數測試 23 4-2-1網格大小測試 23 4-2-2殘餘值設定測試 24 4-3 光追跡程式測試 24 4-3-1入射光包數測試 25 4-3-2 MLS內插資料點數測試 25 4-3-3 MLS基底矩陣元素數目測試 25 4-4 流道幾何與入口流率最佳化 26 4-4-1流道幾何之最佳化 26 4-4-2流道流率之最佳化 27 4-4-3田口法之再驗證 29 4-5 模擬與實驗結果的比較 29 4-6 二維與三維流道之結果比較 30 4-7 流道入口流率比對聚光器聚焦之影響 30 第五章 結論與未來展望 32 5-1 結論 32 5-2 未來展望 33 參考文獻 34 附錄 38 A-1 折射率函數重建 38 A-2 光線與流道邊界接觸之說明 40

    [1] V. R. Horowitz, D. D. Awschalon, S. Pennathur, “Optofluidics: field or technique?” Lab on a Chip, vol. 8, no.11, pp. 1856-1863, 2008.
    [2] G. Zheng, S. A. Lee, S. Yang, C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab on a Chip, vol. 10, no. 22, pp. 3125-3129, 2010.
    [3] H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Analytical Chemistry, vol .83, no. 17, pp. 6641-6647, 2011.
    [4] A. Schap, Y. Bellouard, T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomedical Optics Express, vol. 2, no. 3 , pp. 658-664, 2011.
    [5] C. C. Stemple, S. V. Angus, T. S. Park, J.-Y. Yoon, “Smartphone-based optofluidic lab-on-a-chip for detecting pathogens from blood,” Journal of Laboratory Automation, vol. 19, no. 1, pp. 35-41, 2014.
    [6] A. H. J. Yang, D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab on a Chip, vol. 10, no. 6, pp.769-774, 2010.
    [7] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no. 19, pp. 3810-3815, 2012.
    [8] K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Scientific Reports, vol. 4, 6378 (4 pages), 2014.
    [9] D. Erickson, D. Sinton, D. Psaltis, “Optofluidics for energy applications,” Nature Photonics, vol. 5, no. 10, pp. 583-590, 2011.
    [10] L. Lei, N. Wang, X .M. Zhang, Q. Tai, D. P. Tsai, H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics, vol.4, 043004 (13 pages), 2010.
    [11] S. K. Tang, C. A. Stan, and G. M. Whitesides, "Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel," Lab on a Chip, vol. 8, pp. 395-401, 2008.
    [12] X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. J. Juluri, T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab on a Chip, vol. 9, no. 14, pp. 2050-2058, 2009.
    [13] Y. Yang, L. K. Chin, J. M. Tsai, D. P. Tsai, N. I. Zheludev, A. Q. Liu, “Transformation optofluidics for large-angle light bending and tuning,” Lab on a Chip, vol. 12, no. 19, pp. 3785-3790, 2012.
    [14] Y. C. Seow, S. P. Lim, H. P. Lee, “Optofluidic variable-focus lenses for light manipulation,” Lab on a Chip, vol. 12, no.19, pp. 3810-3815, 2012.
    [15] Q. Chen, A. Jian, Z. Li, and X. Zhang, “Optofluidic tunable lenses using laser-induced thermal gradient,” Lab on a Chip, vol. 16, no. 1, pp. 104-111, 2016.
    [16] Z.-C. Le, X. Wu, Y.-L. Sun, Y. Du, “Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens, ”Optics Communications, vol. 395, pp. 267-274, 2017.
    [17] H. T. Zhao, Y. Yang, L. K. Chin, H. F. Chen, W. M. Zhu, J. B. Zhang, P. H. Yap, B. Liedberg, K. Wang, G. Wang, W. Ser, A. Q. Liu, “Optofluidic lens with low spherical and low field curvature aberrations,” Lab on a Chip, vol. 16, no. 9, pp. 1617-1624, 2016.
    [18] L. Li, J.-H. Wang, Q.-H. Wang, S.-T. Wu, “Displaceable and focus-tunable electrowetting optofluidic lens,” Optics Express, vol. 26, no. 20, pp. 25839-25848, 2018.
    [19] H. T .Zhao, Y. Zhang, P. Y. Liu, P. H. Yap, W. Ser, Q. Liu, “Chemical reaction monitoring via the light focusing in optofluidic waveguides,” Sensors and Actuators B: Chemical, vol. 280, pp. 16-23, 2019.
    [20] T.-Y. Lin, “Optofluidic splitter generating large-angle and vertically condensed beams,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
    [21] Y.-C. Chen, “Improving splitter transmission by optimizing the shape and flow parameter of a micro optofluidic beam splitter,” Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2017.
    [22] P. A. Lyons and J. F. Riley, “Diffusion coefficients for aqueous solutions of calcium chloride and cesium chloride at ,” Journal of the American Chemical Society, vol. 76, no. 20, pp. 5216-5220, 1954.
    [23] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed. Boca Raton, US: CRC Press, 2004.
    [24] M. Born, E. Wolf, Principles of Optics, 7th ed. Cambridge, UK: Cambridge University Press, 1999.
    [25] A. Sharma, D. V. Kumar, A. K. Ghatak, “Tracing rays through graded-index media - a new method,” Applied Optics, vol. 21, pp. 984-987, 1982.
    [26] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19-26, 1980.
    [27] S.Q. Mawlud, N.Q. Muhamad, “Theoretical and Experimental Study of a Numerical Aperture for Multimode,” Chinese Physics Letters, vol. 29, no. 11, 114217, 2012.
    [28] A. Parent, M. Morin, P. Lavine, “Propagation of super-Gaussian field distributions,” Optical and Quantum Electronics, vol.24, pp.1071-1079, 1992.
    [29] Neal, R. M., “Slice Sampling,” The Annals of Statistics, vol. 31, no. 3, 705-767, 2003.
    [30] A. Sharma, A. K. Ghatak, “Ray tracing in gradient-index lenses: computation
    of ray–surface intersection,” Applied Optics, vol. 25, no. 19, pp. 3409-3412, 1986.
    [31] H.-H. Lee, Taguchi methods: Principles and Practices of Quality Design, 2nd ed. New Taipei City, Taiwan: Gau Lih Book, 2004.
    [32] A. Nealen, “An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep, 2004, URL: http://www.nealen.com/projects.
    [33] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,1975.
    [34] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891-923, 1998.
    [35] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.
    [36] M. F. Modest, Radiative Heat Transfer, 3rd ed. Boston, US: Academic Press, 2013.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE