簡易檢索 / 詳目顯示

研究生: 沈祐民
Shen, Yu-Min
論文名稱: 以陽極氧化鋁模板輔助成長半導體氧化物奈米陣列之特性研究
Growth and Properties of Semiconductor Oxide Nanowire Arrays via Porous Alumina Membrane Assistance
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 139
中文關鍵詞: 陽極氧化鋁模板電化學沉積氧化亞銅奈米陣列氧化鋅奈米陣列氧化亞銅-氧化鋅異質接面奈米陣列氧化銅-氧化鋁-二氧化鈦異質接面奈米陣列水分解特性
外文關鍵詞: porous alumina membrane, electrochemical deposition, Cu2O nanowire arrays, ZnO nanowire arrays, Cu2O-ZnO heterojunction nanowire arrays, CuO-Al2O3-TiO2 nanowire arrays, water splitting property
相關次數: 點閱:129下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因電子元件要求輕薄短小及節能減碳意識抬頭,讓解決環保與綠色能源的開發等研究變得十分迫切。一維奈米材料因具有獨特之光電特性,近年來已成為重要的研究領域。本論文將以電化學沉積結合陽極氧化鋁模板輔助法為基礎,製備一維半導體氧化物(氧化亞銅,氧化鋅,氧化亞銅-氧化鋅異質接面,氧化銅-氧化鋁-二氧化鈦)之奈米陣列,並研究其微結構及成長機制,探討其水分解之應用。

    在第一部份中,我們先以電化學沉積法結合模板輔助法製備Cu2O及ZnO為本論文之研究基礎,探討其結構變化及成長機制。首先先以陽極處理製備20-140 nm之高深寬比及高均勻性陽極氧化鋁模板,於不同沉積電位沉積Cu奈米陣列,隨後再藉由退火時間及氣氛氧化亞銅奈米陣列。研究結果指出,Cu/Cu2O奈米陣列將能藉由陽極氧化鋁模板輔助合成。Cu2O之合成為因Cu在PAM氧化過程中,其空間侷限效應下產生壓應力而誘發相轉換所致。在不同孔洞效應之下,Cu奈米線之結晶性將隨著孔洞減小而由非晶轉為單晶,其轉變之臨界半徑為90~100 nm。單晶Cu奈米線之形成主要因均勻的電流密度分佈(J)及晶核大小(r0)下具有較慢之成核速率。經由退火處理不同孔洞大小所合成之Cu2O奈米陣列中,其結晶性之提升主要為Cu及O2原子重新排列所致。

    ZnO奈米陣列之結晶性主要則利用AZO晶種層結合模板輔助法所合成。由結果指出,以電化學沉積直接合成之奈米線主要為Zn(OH)2為主,在經由退火處理後,其Zn(OH)2將經由脫水反應形成ZnO結構。ZnO之結晶性由AZO晶種層所影響,其主要結晶方向為 [001]。

    在第二部份中,我們結合Cu2O-ZnO p-n異質接面,探討其p-n異質接面於水分解特性之應用。首先不同型態之Cu-Zn及Cu2O-ZnO 奈米陣列合成藉由脈衝時間,電解質濃度,及退火時間所控制。結果指出在控制脈衝時間40 (Cu)及20 (Zn)秒下,其奈米陣列結構為竹節狀。在經由控制退火時間下,隨著退火時間增加,其竹節狀之奈米線結構將轉變為連續奈米線。主要因素退火過程中,ZnO擴散至Cu2O所致。在水分解特性分析中,竹節狀Cu2O-ZnO奈米陣列展現出較佳的光電流(0.12 mA/cm2)及轉換效率(0.13%),其主要原因為較多電子由Cu2O轉移至ZnO所致。

    在第三部分中,TiO2奈米顆粒則以CVD法鍍於CuO/PAM奈米陣列上而形成CuO-Al2O3-TiO2 p-insulator-n 異質接面,探討其水分解特性之研究。CuO/PAMs及TiO2@CuO/PAMs之最高光電流分別為1.08 mA/cm2 (0.65 V)及1.81 mA/cm2 (0.9 V),且轉換效率則分別為1.61 % (0.8 V/SCE)。絕緣層Al2O3之影響下,其較高之臨界電位之產生主要因電子聚集在能障所致,隨著施加之電位升高至崩潰電壓,其電流密度快速升高則因電子穿隧效所致。

    Recently, three issues including the small devices, energy saving and carbon reduction have attracted many researchers to solve these problems by increasing the efficiency of the rechargeable battery and solar cell. One dimensional nano materials have been attracted great attention because of its specific optical and electrical properties. In this study, 1-D semiconductor oxide nanowire arrays, such as Cu2O, ZnO, Cu2O-ZnO and CuO-Al2O3-TiO2 heterojunction, were synthesized via porous alumina membrane (PAM) assistance by electrochemical deposition. Above all, the characterization of microstructure, growth mechanism, and water splitting application were given for academic studies.

    In the first part, the foundation of synthesizing Cu2O and ZnO nanowire arrays by membrane assistance was discussed. Firstly, the various pores (20~140 nm) of porous alumina membrane were fabricated. Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size, and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays by controlling various annealed time and atmosphere. Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template. The copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template, which caused the Cu→Cu2O phase transformation by compression stress. Under various pore sizes affection, the crystallinity of Cu nanowire was improved with decreasing the pore sizes. The single crystal Cu was occurred due to homogeneous current density distributes and relationship between current density (J) and nucleus radius (ro). The crystallinity of Cu2O nanowires synthesized by annealing of various Cu nanowire sizes was found to improvement. The rearranged of Cu and O2 lattice sites was promoted the enhancing of crystallinity property.

    AZO seed layer was utilized with template assistance to improve the ZnO nanowire crystallinity. Results indicate the Zn(OH)2 was produced during directly electrochemical deposition. The ZnO was formed during the hydration process by annealing. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO [001] nanowires are interpreted by the seed-layer-assisted growth mechanism.

    In the second part, we combine the Cu2O and ZnO to be a p-n heterojunction, and characterize the water splitting property. Under controlling of pulse duration, electrolyte concentration, and annealing time were utilized to synthesize Cu-Zn and Cu2O-ZnO nanowire arrays. Results indicate the bamboo-like (Cu, Zn) multilayer structure was observed at 40 (Cu) and 20 (Zn) seconds pulse deposition. During the various annealing time of segmented Cu-Zn nanowire process, the (Cu, Zn) oxide nanowire structures were exhibited segmented nanowire and continuous nanowire. In texture formation of (Cu, Zn) oxide nanowire was proposed on the Zn diffused into Cu oxide of heating process. The application on water splitting characterization was observed better performance in Cu2O-ZnO bamboo-like of photocurrent density 0.12 mA/cm2 and the photoconversion efficiency 0.13 %, which promotes the higher electrons transfer from Cu2O to ZnO.

    In the third part, CuO-Al2O3-TiO2 p-insulator-n junction was fabricated by depositing the TiO2 nanoparticle on the CuO/PAM. The photo-current and threshold voltage (Vth) of CuO and CuO-Al2O3-TiO2 were measured as 1.08 mA/cm2 (0.65 V/SCE) and 1.81 mA/cm2 (0.9 V/SCE), respectively. The photoconversion efficiencies were characterized as 1.08% and 1.61%. Highly threshold voltage was observed due to the insulation layer of Al2O3 was posited between CuO and TiO2 interlayer to form the p-i-n junction, which cause the electrons were accumulated on the barrier layer. The rapidly increasing current was eventuated by electron tunneling effect as applying the voltage to breakdown voltage.

    摘要............I Abstract ...........III 致謝............VI 總目錄...........VIII 表目錄..........XII 圖目錄...........XIII 第一章 緒論..........1 1.1 前言..........1 1.2 研究動機........3 第二章 文獻回顧及理論基礎.......7 2.1 陽極氧化鋁模板 (porous alumina membrane, PAM)....7 2.2 氧化鋅 (ZnO)........12 2.3 氧化亞銅 (Cu2O)........15 2.4 二氧化鈦 (TiO2).......17 2.5 陽極氧化鋁模板輔助奈米陣列成長.....19 2.5.1 合成方法.........19 2.5.2 電化學沉積製備一維奈米線......22 2.5.2-1 電化學理論基礎......22 2.5.2-2 電化學法沉積氧化亞銅奈米陣列....25 2.5.2-3 電化學法沉積氧化鋅奈米陣列.....29 2.6 水分解材料 (water splitting materials)....32 第三章 實驗方法..........40 3.1 實驗藥品及製程設備........40 3.1.1 實驗設備.........40 3.1.2 實驗藥品.........40 3.2 實驗方法.........42 3.2.1 陽極氧化鋁模板製備......42 3.2.2 模板輔助奈米陣列成長.......44 3.3 微結構及特性分析.......46 3.3.1 掃描式電子顯微鏡 (Scanning electron microscopy, SEM).46 3.3.2 X光繞射儀(X-ray diffractionmeter, XRD)....46 3.3.3 高解析穿透式電子顯微鏡 (high resolution transmission electron microscopy, HRTEM).......46 3.3.4 特性分析.........47 第四章 陽極氧化鋁模板輔助成長氧化亞銅奈米陣列.....48 4.1 前言.........48 4.2實驗方法........49 4.2.1 陽極氧化鋁模板(PAMs)之製備.....49 4.2.2 Cu及Cu2O奈米陣列製備及結構分析.....49 4.3 陽極氧化鋁模板輔助成長銅奈米陣列.....50 4.4 退火時間及氣氛對Cu2O/PAM之影響.....56 4.5 不同孔洞大小對Cu奈米陣列結晶性之影響....63 4.6 不同孔洞大小對Cu2O/PAM奈米陣列結晶性之影響...70 4.7結論..........74 第五章 晶種法及模板輔助法成長單晶氧化鋅奈米陣列....75 5.1 前言.........75 5.2 實驗方法.........76 5.2.1 AZO/PAMs晶種層製備.......76 5.2.2 ZnO/AZO/PAMs奈米陣列製備......76 5.3 AZO/PAMs特性分析.......77 5.4 ZnO/AZO/PAM奈米陣列合成.....82 5.5 ZnO/AZO/PAM奈米陣列退火處理合成分析...86 5.6 結論.........91 第六章 脈衝法成長氧化亞銅-氧化鋅異質接面及水分解特性...92 6.1 前言.........92 6.2實驗方法........93 6.2.1多層(multilayer) Cu-Zn及Cu2O-ZnO奈米陣列製備..93 6.2.2 Cu-Zn/PAMs及Cu2O-ZnO奈米陣列之特性分析..93 6.3 Cu-Zn複合金屬奈米陣列.......94 6.4 竹節狀Cu-Zn奈米陣列.......100 6.5 (Cu, Zn)氧化物奈米陣列.......105 6.6 (Cu, Zn)氧化物奈米陣列水分解分析.....109 6.7 結論.........113 第七章 氧化銅-氧化鋁-二氧化鈦 p-insulator-n異質接面之水分解特性..114 7.1 前言.........114 7.2 實驗方法.........115 7.2.1 CuO@TiO2/PAMs異質接面.115 7.2.2 CuO/PAMs及TiO2@CuO/PAMs奈米陣列之特性分析.115 7.3 TiO2@CuO/PAMs微結構分析.116 7.4 TiO2@CuO/PAMs水分解特性分析..120 7.5 CuO/Al2O3/TiO2 p-insulator-n異質接面介面特性....122 7.6 結論.........124 第八章 總結論..........125 參考文獻...........127 作者簡歷...........137 表目錄 Table 2-1 A review property of zinc oxide.........14 Table 2.2 1-D nanostructure materials fabricate by PAM assistance..21 Table 2-3 Semiconductor photocatalysts for water splitting....39 Table 6-1 Compound analyze and d(001) index under various position...99 圖目錄 Figure 1-1. Schematic of carrier generation and separation in (a) axial and (b) radial p-i-n nanowires.........5 Figure 1-2 研究架構圖.........6 Figure 2-1 Schematic of porous alumina membrane (PAM).....9 Figure 2-2 Relationship between applied voltage and interpore distance of self-assembly porous alumina membrane.......10 Figure 2-3 Schematic diagram showing pore development during anodizing of aluminum in phosphoric acid.......11 Figure 2-4 Schematic diagram of ZnO Wurzite structure. The indexes “a” and “c” are lattice constant, and “uc” is the plane distance between Zn and O atoms along [0001]..........13 Figure 2-5 (a) Crystal structure of Cu2O. Black balls represent copper atoms, white ones oxygen atoms. (b) Cu2O supercell structure. Black and white balls represent the two independent frameworks, respectively......16 Figure 2-6 TiO2 bulk structural diagram of rutile and anatase phase..18 Figure 2-7 Pathway of a general electrode reaction......24 Figure 2-8 (a) Bright field TEM images and (b) SAED patterns of Cu2O NWs deposited at Va=9 V and pH=3.9. A high resolution TEM image is shown in the inset...........27 Fig. 2-9 XRD diffraction patterns of Cu2O/Cu NWs at different deposition times: (a) 1 h, (b) 3 h (NWs of Fig. 1) and (c) 6 h under continuous potential...28 Figure 2-10 The XRD patterns Zn deposited in PAM: (a) no heat treatment, and oxidation treatment at 300oC for (b) 8 h, (c) 15 h, (d) 25 h, and (e) 35 h...31 Figure 2-11 Schematic representation of a photoelectrochemical cell (PEC)..35 Figure 2-12 Wavelength distribution of sunlight in nature.....36 Figure 2-13 Band positions of several semiconductors in contact with aqueous electrolyte at pH 1, and the standard potentials of several redox couples against standard hydrogen electrode potential.......37 Figure 2-14 Schematic diagram showing charge generation and transfer in the presence of light causing degradation of dye.....38 Figure 3-1 Schematic diagram of anodization process....43 Figure 3-2 Schematic dagram of depositing the nanowire arrays....45 Figure 4-1 Plane-view SEM images of Cu nanowire arrays with diameter equal to various PAM pore sizes (A) 20~30, (B) 70~90, (C) 90~100, and (D) 110~140 nm. PAMs were removed using 1 M NaOH solution for 30 min....52 Figure 4-2 XRD patterns of Cu deposited into PAM templates at various potentials...........53 Figure 4-3 Plane-view SEM images of (a) PAM template and Cu nanowire arrays within a PAM at (b) -180mV (cross sectional), (c) -180mV, and (d) -230mV..54 Figure 4-4 TEM image of (a) a single Cu nanowire and (b) electron diffraction pattern. The deposition potential is -180 mV.....55 Figure 4-5 Plane-view SEM image of Cu2O nanowire arrays within PAM after heat treatment at 400C for (a) 4, (b) 8, and (c) 12 h......57 Figure 4-6 TEM images and SAED patterns of a single Cu2O nanowire after 400C heat treatment in air for (a,d) 4, (b,e) 8, (c,f) 12 h. The upper figures are electron diffraction patterns.........58 Figure 4-7 Plane-view SEM images of Cu2O nanowire arrays within PAM after heat treatment at 400C for 8 h. The partial oxygen pressure is (a) 0.12, (b) 0.06, and (c) 0.02 atm..........61 Figure 4-8 SEM images of PAM template under (A) H2SO4 solution, 18 V, and H2C2O4 solution (B) 40 V, (C) 60 V, and (D) 80 V.....62 Fig. 4-9 TEM images and SAED patterns of a single Cu2O nanowire after 400C heat treatment for 8 h in (a, d) 0.12, (b, e) 0.06, and (c, f) 0.02 atm of partial oxygen pressure. The upper figures are electron diffraction patterns....64 Figure. 4-10 TEM and SAED images of Cu nanowire arrays with diameters of (A, B) 20~30, (C, D) 70~90, (E, F) 90~100, and (G, H) 110~140 nm....65 Figure 4-11 Sketch of J-t curve of Cu growth in various PAM pore sizes under a constant potential of -0.18 V/SCE.......68 Figure 4-12 Sketch of Cu nanowire growth mechanism in various PAM pore sizes...........69 Figure 4-13 Plane-view SEM images of Cu2O nanowire arrays prepared within various pore sizes of PAMs (A) 20~30, (B) 70~90, (C) 90~100, (D) 110~140 nm, and (E) EDX analysis image of Cu2O nanowire. The PAMs were removed using 1 M NaOH solution for 30 min.......72 Figure 4-14 TEM and SAED images of Cu2O nanowire arrays prepared within various PAM pore sizes (A, B) 20~30, (C, D) 70~90, (E, F) 90~100, and (G, H) 110~140 nm...........73 Figure 5-1 Plane-view SEM images of AZO seed layers at annealing temperatures and durations of (a) 400C, 0 h (b) 600C, 0 h, and (c) 400C, 2h in a vacuum.79 Fig. 5-2 Plot of average sheet resistance versus the number of AZO seed films at annealed at 400C for 0 h in a vacuum......80 Fig. 5-3 TEM images of AZO/PAMs composite. (a) Low magnification, (b) high-magnification, (c) high-resolution image, (d) electron diffraction pattern, and (e) EDX spectra of AZO/PAMs composite at point A, B, and C. Regions 1, 2, and 3 in (a) are carbon films, AZO films, and PAMs, respectively...81 Figure 5-4 Plane-view SEM image of (a) PAMs and cross sectional images of nanowire arrays deposited in the PAMs at -1 V/SCE and (b) 65 and (c) 80C.84 Figure 5-5 TEM and high-resolution TEM images of a single ZnO nanowire deposited at temperatures of (a, c) 65C and (b, d) 80C....85 Figure 5-6 Cross-sectional and SEM images of ZnO nanowire after 400C heat treatment in air for (a) 4, (b) 8 h, and (c) 8 h (top-view)....88 Figure 5-7 TEM images and selected area electron diffraction (SAED) patterns of a single ZnO nanowire with 400C heat treatment for (a, c) 4 h and (b, d) 8 h.89 Figure 5-8 TEM image of ZnO/AZO/PAMs nanowire arrays with heat treatment at 400C for 8 h. The sample was prepared by focused ion beam (FIB). Points A , B and C correspond to ZnO/PAMs, interface between ZnO and AZO, and AZO, respectively..........90 Figure 6-1 SEM images of Cu-Zn nanowire arrays under synthesized PAMs pore size of (a) 110~140 nm and (b) 70~90 nm..96 Figure 6-2 (a) TEM and (b) SAED images of single Cu-Zn nanowire arrays under synthesized PAMs pore size of 110~140 nm..97 Figure 6-3 (a) TEM, (b,c,d) SAED, and (e,f,g) high resolution TEM images of single Cu-Zn nanowire arrays under synthesized PAMs pore size of 70~90 nm.98 Figure 6-4 (a) SEM , (b) TEM, (c) SAED, and (d,e) high resoultion TEM images of single Cu-Zn nanowire under synthesized PAMs pore size of 70~90 nm. The concentration and pulse period between Cu and Zn are 1:10 and 40:20 sec, respectively..102 Figur. 6-5 (a) HADDF image, (b), EDS analysis, and (c, d) line scan EDS analysis of Cu-Zn bamboo-like nanowire..103 Figure 6-6 Sketch of V-t and J-t curve of Cu-Zn growth PAM pore sizes under a pulse potential of -0.18 and -1.26V/SCE......104 Figure 6-7 (a) TEM and (b, c) SAED images of single Cu2O-ZnO bamboo-like nanowire under annealed temperature at 400oC for 8 hr.106 Figure 6-8 (a) HADDF image, (b), EDS analysis, and (c, d) line scan EDS analysis of Cu2O-ZnO bamboo-like nanowire..107 Figure 6-9 (a) TEM, (b) SAED images, and (c) EDS analysis of single Cu2O-ZnO bamboo-like nanowire under annealed temperature at 400oC for 12 hr..108 Figure 6-10 (A) Current density versus applied potential curves measured using 150 W UV illuminations (AM 1.5 filter), (B) photocurrent density, and (C) photoconversion efficiency of bamboo-like Cu2O-ZnO and ZnO-doped Cu2O nanowire arrays..........111 Figure 6-11 Enegry band gap structural and electron transfer diagram of (a) ZnO-doped Cu2O and (b) Cu2O-ZnO bamboo-like nanowire arrays..112 Figure 7-1 SEM images of (a) porous alumina membranes (PAMs) under 60V anodization, (b) CuO nanowire arrays, (c) TiO2@ CuO/PAMs nanostructure by thermal CVD. The inserts are magnified images of (c)....117 Figure 7-2 TEM images of a TiO2@CuO/PAMs nanowire (A) at low magnification, (B) EDS analysis of a TiO2@CuO/PAMs nanowire, (C) high resolution, and fast Fourier transformation images, (D) CuO/PAMs, (E) TiO2@CuO/PAMs, and (F) TiO2 particles produced by thermal CVD......119 Figure. 7-3 (A) Current density versus applied potential curves measured using 150 W UV illuminations (AM 1.5 filter), (B) photocurrent density, and (C) photoconversion efficiency of CuO/PAMs and TiO2@CuO/PAMs nanowire arrays. The input intensity of the light was 100 mW/cm2 and the electrolyte was 1M NaOH solution...........121 Figure 7-4 Energy band gap structural diagram of CuO-Al2O3-TiO2 p-insulation-n heterojunctions..........123

    1. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
    2. H. Kind, H. Yan, M. Law, B. Messer, and P. Yang, Adv. Mater. 14, 158 (2002).
    3. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971 (1997).
    4. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283, 1513 (1999).
    5. J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, Nature, 391, 561 (1998).
    6. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Phys. Rev. 61, 6086, (2000).
    7. Y. Wu and P. Yang, Adv. Mater. 13, 520 (2001).
    8. Y. Y. Wu and P. D. Yang, Appl. Phys. Lett. 77, 43 (2000).
    9. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, and C. P. Chen, Appl. Phys. Lett., 91, 223106 (2007).
    10. Z. L. Wang and J. Song, Science, 312, 14 (2006).
    11. B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Reviews 38, 16 (2009).
    12. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Letters 8, 4191 (2008).
    13. F. Qian, S. Gradecak, H. G. Park, Y. Dong, Z. L. Wang, and C. M. Lieber, Nat. Mater. 7, 701 (2008).
    14. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, J. Phys. Chem. C, 115, 11302 (2011).
    15. Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, and Y. W. Dong, Superlattices and Microstructure, 50, 549 (2011).
    16. D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p. 105 (1992)
    17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    18. D. Dobrev, J. Vetter, N. Angert, and R. Neumann, Appl. Phys. A 72, 729 (2001).
    19. R. Micheletto, H. Fukuda, and Ohtsu, Langmuir 11, 3333 (1995).
    20. P. M. Paulus, F. Luis, M. Kroll, G. Schmid and L. J. de Jongh, J. Mag. Mag. Mater., 224, 180 (2001).
    21. M. A. Barrett and A. B. Winterbottom, “1st international congress on metal corrosion, 1961” Butterworth & Co., London, 1962, p657.
    22. G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, Nature 30, 433 (1978).
    23. G. E. Thompson, and G. C. Wood, Nature 19, 230 (1981).
    24. F. Keller, M. A. Barrett, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).
    25. S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General Notes and Theory”, in Surface treatment finishing of aluminum and its alloys, 2nd ed., Finishing Publications Ltd., Teddington, Middlesex, UK, Vol. 1, Chapter 6 p.289 (1987).
    26. W. Lee, R. Ji, U. Osele, and K. Nielsch, Nature Materials, 5, 741 (2006).
    27. G. E. Thompson, Thin Solid Films, 297, 192 (1997).
    28. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richarodson, and J. S. Goode, Nature, 272, 433 (1978).
    29. H. Masuda, and K. Fukuda, Science 9, 1466 (1995).
    30. H. Masuda, F, Hasegwa, S. Ono, J. Electrochem. Soc., 144, 127 (1997).
    31. G. L. Che, B. B. Lakshmi, E. R.Fisher, C. R. Martin, Nature, 393, 346 (1998).
    32. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
    33. M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A, 19, 963 (2001).
    34. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    35. Z. K. Tang, G. K. L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma. And Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    36. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchilcov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morboc, J. Appl. Phys., 98, 041301-1 (2005).
    37. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
    38. E. Ruiz, S. Alvarez, P. Alemany, and R. A. Evarestov, Phys. Rev. B, 56, 7189 (1997).
    39. R. W. G. Wyckoff, Crystal Structure, Wiley, New York, (1965).
    40. J. M. Zuo, M. O’ Keeffe, J. C. H. Spence, Nature, 401, 49 (1999).
    41. G. K. Paul, Y. Kawa, H. Sato, T. Sakurai, and K. Akimoto, Appl. Phys. Leet., 88, 141901 (2006).
    42. M. A. Green, and M. J. Keevers, Prog. Photovolt., 3, 189 (1995)
    43. J. J. Lofeski, J. Appl. Phys., 27, 777 (1956).
    44. P. Poizot, S. Laruelle, S. Grugeon, and J-M. Tarascon, Nature, 407, 496 (2000).
    45. G. S. Hermann, Y. Gao, T. T. Tran, and J. Osterwalder, Surf. Sci., 447, 201 (2000).
    46. J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, Mater. Res. Bull., 10, 1023 (1975).
    47. U. Diebold, Surf. Sci. Rep., 48, 53 (2003).
    48. A. Hagfeldt and M. Gratzel, Chem. Rev., 95, 49 (1995).
    49. H. Gerischer and Heller, J. Electrochem. Soc., 139, 113 (1992).
    50. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).
    51. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes, J. Phys. D-Appl. Phys., 39, 2498 (2006).
    52. A. Fujishima and K. Honda, Nature, 238, 37 (1972).
    53. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, Thin Solid Films, 496, 42 (2006).
    54. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95 735 (1995).
    55. J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, and J. S. Suh, Chem. Mater. 13, 2387 (2001).
    56. X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Physica, 23, 75 (2004).
    57. X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Communications, 130, 429 (2004).
    58. X. Y. Zhu, J. F. Ma, Y. G. Yang, J. T. Tao, J. Zhou, Z. Q. Zhao, L. J. Xie and H. Tian, Material Research Bulletin., 41, 1588 (2006).
    59. C.Zhang, F. Tao, G. Q. Liu, L. Z. Yao and W. L. Cai, Materials Letters., 62, 248 (2008).
    60. Y. C. Wang, I. C. Leu, and M. H. Hon, J. Cryst. Growth, 564, 237 (2002).
    61. Y. C. Wang, I. C. Leu, and M. H. Hon, J. Appl. Phys., 95, 1444 (2004).
    62. L, F, Liu, W. Y. Zhou, S. S. Xie, O. Albrecht, and K. Nielsch, Chem. Phys. Lett., 466, 165 (2008).
    63. L. Li, Y. Zhang, G. Li, L. Zhang, Chemical Physics Letters, 378, 244 (2003).
    64. Y. Zhou, C. Shen, H. Li, Solid State Ionics, 146, 81 (2002).
    65. Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, C. L. Bai, Chem. Mater., 15, 664 (2003).
    66. T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien, Science, 261, 1316 (1993).
    67. S. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Yung, and Y. W. Du, J. Magn. Magn. Mater., 222, 97 (2000).
    68. H. Zeng, M. Zheng , R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon, and S. Bandyopadhyay, J. Appl. Phys., 87, 4718 (2000).
    69. Y. W. Wang, L. D. Zhang, G. W. Meng, X. S. Peng, Y. X. Jin, and J. Zhang, J. Phys. Chem. B, 106, 2502 (2002).
    70. G. B. Ji, S. L. Tang, B. X. Gu, and Y. W. Du, J. Phys. Chem. B, 108, 8862 (2004).
    71. R. Inguanta, S. Piazza, C. Sunseri, Appl. Surf. Science, 255, 8816 (2009).
    72. T. Kondo, M. Tanji, K. Nishio, H. Masuda, Electrochem. Solid State Lett., 9, C189 (2006).
    73. R. Inguanta, S. Piazza, C. Sunseri, Nanotechnology, 18, 485605 (2007).
    74. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett., 84, 26 (2004).
    75. A. J. Bard, L. R. Faulk, Electrochemical method, Wiley, New York, 21(1980).
    76. J. S. Choi, E. S. Ko, J. W. Kang, Y. S. Tak, and J. Y. Lee, J. Ind. Eng. Chem., 13, 305 (2007).
    77. J. Oh, Y. Tak, and J. Lee, Elecrochemical and Solid-State Letters, 7, C27 (2004).
    78. E. Ko, J. Choi, K. Okamoto, Y. Tak, and J. Lee, Chem. Phys. Chem., 7, 1505 (2006).
    79. H. S. Shin, J. Y. Song, and J. Yu, Mater. Lett. 63, 397 (2009).
    80. R. Inguanta, C. Sunseri, and S. Piazza, Elecrochemical and Solid-State Letters, 10, K63 (2007).
    81. R. Inguanta, S. Piazza, and C. Sunseri, Electrochimica Acta, 53, 6504 (2008).
    82. J. Elias, R. T. Zaere, and C. L. Clément, J. Phys. Chem. C, 112, 5736 (2008).
    83. M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Chem. Phys. Lett. 363, 123 (2002).
    84. Q. Wang, G. Wan, B. Xu, J. Jie, and X. Han, Mater. Lett. 59, 1378, (2005).
    85. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).
    86. M. Lai, and D. J. Riley, Chem. Mater. 18, 2233 (2006).
    87. A. Currao, Transformation and Stroage of Solar Energy, 61, 815 (2007).
    88. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
    89. P. Poizot, S. Laruelle, S. Grugeon, and J-M. Tarascon, Nature, 407, 496 (2000).
    90. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, . Z. Zhang, and Y. Li, Nano Letters, 9, 2331 (2009).
    91. K. Keem, H. Kim, G. T. Kim, J. S. Lee, and B. Min, Appl. Phys. Lett. 84, 4376 (2004).
    92. Y. Bessekhouad, D. Robert, J. V. Weber, Catalysis Today, 101, 315 (2005).
    93. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, and S. Ogale, J. Mater. Chem., 22 (2012) 17055.
    94. T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng, H. Li, and D. Wang, Phys. Chem. Chem. Phys., 12, 15476 (2010).
    95. Z. Liu, H. Bai, S. Xu, and D. D. Sun, Inter. J. Hydro. Energy, 36, 13473 (2011).
    96. H. Wei, H. Gong, Y. Wang, X. Hu, L. Chen, H. Xu, P. Liu, and B. Cao, CrystEngComm, 13, 6065 (2011).
    97. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett., 10, 1088 (2010).
    98. H. Kim, M. Seol, J. Lee, and K. Yong, J. Phys. Chem. C, 115, 25429 (2011).
    99. A.Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, and M. Gratzel, Energy & Envior. Sci. 5, 8673 (2012).
    100. T. Jiang, T. Xie, L. Chen, Z. Fu, and D. Wang, Nanoscale, 5, 2938 (2013).
    101. J. S. Jang, S. M. Ji, S. W. Bae, H. C. Hon, and J. S. Lee, J. Photochem. Photobiol., 188, 112 (2007).
    102. H. Fujii, M. Ohtaki, K. Eguchi, and H. J. Arai, J. Mol. Catal. A: Chem., 129, 61 (1998).
    103. J. S. Jang, H. G. Kim, U. A. Joshi, J. W. Jang, and J. S. Lee, Int. J. Hydrogen Energy, 33, 5975 (2008).
    104. H. Park, W. Choi, and M. R. Hoffmann, J. Mater. Chem., 18, 2379 (2008).
    105. R. Brahimi, Y. Bassekhouad, A. Bouguelia, and M. Trari, Catal. Today, 122, 62 (2007).
    106. X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Lu, and H. Cheng, Chem. Commun, 23, 3452 (2009)
    107. X. Wang, G. Liu, G. Lu, and H. Cheng, Int. J. Hydrogen Energy 35, 8199 (2010).
    108. T. Kida, G. Guan, and A. Yoshida, Chem. Phys. Lett, 371, 563 (2003).
    109. S. Y. Ryu, J. Choi, W. Balcerski, T, K, Lee, and M. R. Hofmann, Ind. Eng. Chem. Res. 46, 7476 (2007).
    110. J. Choi, W. Balcerski, T, K, Lee, and M. R. Hofmann, J. Mater. Chem., 18, 2371 (2008).
    111. L. Amirav and A. P. Alivisatos, J. Phys. Chem. Lett. 1, 1051 (2010).
    112. D. Jing, and L. GuO, Catal Commun., 8, 795 (2007).
    113. Y. Bassekhouad, M. Trari, and J. P. Doumerc, Int. J. Hydrogen Energy, 28, 43 (2003).
    114. R. Brahimi, Y. Bassekhouad, A. Bouguelia, and M. Trari, J. Photochem. Photobiol., 186, 242 (2007).
    115. A. Derbal, S. Omeiri, A. Bouguelia, and M. Trari, Int. J. Hydrogen Energy, 33, 4274 (2008).
    116. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, and M. Trari, Appl. Energy, 87, 2230 (2010).
    117. J. S. Jang, D. W. Hwang and J. S. Lee, Catal. Today, 120, 174 (2007).
    118. J. S. Jang, S. J. Hong, J. Y. Kim, and J. S. Lee, Chem. Phys. Lett. 475, 78 (2009).
    119. C. C. Hu, J. N. Nian, and H. Teng, Sol. Energy Mater. Sol. Cells, 92, 1071 (2008).
    120. D. S. Xu, Y. J. Xu, D. P. Chen, G. L. Guo, L. L. Gui, and Y. Q. Tang, Adv. Mater., 12, 520 (2000).
    121. R. Guan, H. Hashimoto and K.H. Kuo, Acta Crystallogr. B, 40, 560 (1984).
    122. R. Guan, K.H. Kuo, H. Hashimoto, Proceedings of the 8th European Congress on Electron Microscopy, Budapest, 1984, p.1173.
    123. G. Zhou, J. Appl. Phys., 105, 104302 (2009).
    124. G. Zhang and J. Chen, J. Electrochem. Soc. 152, A2069 (2005).
    125. D. Dobrev, J. Vetter, N. Angert, and R. Neumann, Appl. Phys. A 69, 233 (1999).
    126. P. Delahay, “New Instrumental Methods in Electrochemistry”, Interscience, New York 1954.
    127. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem., 138, 225 (1982).
    128. J. G. Wang, M. L. Tain, N. Kumar, and T. E. Mallouk, Nano Lett., 5, 1247 (2005).
    129. Z. Fan, D. Dutta, C. J. Chien, H. Y. Chen, and E. C. Brown, Appl. Phys. Lett., 89, 213110 (2006).
    130. L. Yang, Y. Tang, A. Hu, X. Chen, K. Liang, and L. Zhang, Physica B, 403, 2230 (2008).
    131. J. B. Yi, H. Pan, J. Y. Lin, J. Ding, Y. P. Feng, S. Thongmee, T. Liu, H. Gong, and L. Wang, Adv. Mater, 20, 1170 (2008).
    132. C. H. Ku, H. H. Yang, G. R. Chen, and J. J. Wu, Crystal Growth & Design, 8, 283 (2008).
    133. C. L. Kuo, R. C. Wang, C. P. Liu, and J. L. Huang, Nanotechnology, 19, 035605 (2008).
    134. M Sima, I. Enculescu, M. Sima, M. Enache, W. Vasile, and J. P. Ansermet, Phys. Stat. Sol. (b), 244, 1522 (2007).
    135. M. Gupta, D. Pinisetty, J. C. Flake, and J. J. Spivey, J. Electrochem. Soc. 157, D473 (2010).
    136. Q. Li and C. Wang, Chem. Phys. Lett. 375, 525 (2003).
    137. Z. Zhang, Md. F. Hossain, and T. Takahashi, Inter. J. Hydro. Energy 35, 8528 (2010).
    138. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Nano Letters 11, 3026 (2011).
    139. N. Helaili, Y. Bessekhouad, A. Bouguelia, and M. Trari, J. Hazardous Mater. 168, 484 (2009).
    140. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, Nano Letters 8, 1906 (2008).
    141. J. Bandara, C. P. K. Udawatta, and C. S. K. Rajapakse, Photochem. Photoboil. Sci., 4, 857 (2005).

    下載圖示 校內:2016-12-03公開
    校外:2016-12-03公開
    QR CODE