| 研究生: |
沈祐民 Shen, Yu-Min |
|---|---|
| 論文名稱: |
以陽極氧化鋁模板輔助成長半導體氧化物奈米陣列之特性研究 Growth and Properties of Semiconductor Oxide Nanowire Arrays via Porous Alumina Membrane Assistance |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 陽極氧化鋁模板 、電化學沉積 、氧化亞銅奈米陣列 、氧化鋅奈米陣列 、氧化亞銅-氧化鋅異質接面奈米陣列 、氧化銅-氧化鋁-二氧化鈦異質接面奈米陣列 、水分解特性 |
| 外文關鍵詞: | porous alumina membrane, electrochemical deposition, Cu2O nanowire arrays, ZnO nanowire arrays, Cu2O-ZnO heterojunction nanowire arrays, CuO-Al2O3-TiO2 nanowire arrays, water splitting property |
| 相關次數: | 點閱:129 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,因電子元件要求輕薄短小及節能減碳意識抬頭,讓解決環保與綠色能源的開發等研究變得十分迫切。一維奈米材料因具有獨特之光電特性,近年來已成為重要的研究領域。本論文將以電化學沉積結合陽極氧化鋁模板輔助法為基礎,製備一維半導體氧化物(氧化亞銅,氧化鋅,氧化亞銅-氧化鋅異質接面,氧化銅-氧化鋁-二氧化鈦)之奈米陣列,並研究其微結構及成長機制,探討其水分解之應用。
在第一部份中,我們先以電化學沉積法結合模板輔助法製備Cu2O及ZnO為本論文之研究基礎,探討其結構變化及成長機制。首先先以陽極處理製備20-140 nm之高深寬比及高均勻性陽極氧化鋁模板,於不同沉積電位沉積Cu奈米陣列,隨後再藉由退火時間及氣氛氧化亞銅奈米陣列。研究結果指出,Cu/Cu2O奈米陣列將能藉由陽極氧化鋁模板輔助合成。Cu2O之合成為因Cu在PAM氧化過程中,其空間侷限效應下產生壓應力而誘發相轉換所致。在不同孔洞效應之下,Cu奈米線之結晶性將隨著孔洞減小而由非晶轉為單晶,其轉變之臨界半徑為90~100 nm。單晶Cu奈米線之形成主要因均勻的電流密度分佈(J)及晶核大小(r0)下具有較慢之成核速率。經由退火處理不同孔洞大小所合成之Cu2O奈米陣列中,其結晶性之提升主要為Cu及O2原子重新排列所致。
ZnO奈米陣列之結晶性主要則利用AZO晶種層結合模板輔助法所合成。由結果指出,以電化學沉積直接合成之奈米線主要為Zn(OH)2為主,在經由退火處理後,其Zn(OH)2將經由脫水反應形成ZnO結構。ZnO之結晶性由AZO晶種層所影響,其主要結晶方向為 [001]。
在第二部份中,我們結合Cu2O-ZnO p-n異質接面,探討其p-n異質接面於水分解特性之應用。首先不同型態之Cu-Zn及Cu2O-ZnO 奈米陣列合成藉由脈衝時間,電解質濃度,及退火時間所控制。結果指出在控制脈衝時間40 (Cu)及20 (Zn)秒下,其奈米陣列結構為竹節狀。在經由控制退火時間下,隨著退火時間增加,其竹節狀之奈米線結構將轉變為連續奈米線。主要因素退火過程中,ZnO擴散至Cu2O所致。在水分解特性分析中,竹節狀Cu2O-ZnO奈米陣列展現出較佳的光電流(0.12 mA/cm2)及轉換效率(0.13%),其主要原因為較多電子由Cu2O轉移至ZnO所致。
在第三部分中,TiO2奈米顆粒則以CVD法鍍於CuO/PAM奈米陣列上而形成CuO-Al2O3-TiO2 p-insulator-n 異質接面,探討其水分解特性之研究。CuO/PAMs及TiO2@CuO/PAMs之最高光電流分別為1.08 mA/cm2 (0.65 V)及1.81 mA/cm2 (0.9 V),且轉換效率則分別為1.61 % (0.8 V/SCE)。絕緣層Al2O3之影響下,其較高之臨界電位之產生主要因電子聚集在能障所致,隨著施加之電位升高至崩潰電壓,其電流密度快速升高則因電子穿隧效所致。
Recently, three issues including the small devices, energy saving and carbon reduction have attracted many researchers to solve these problems by increasing the efficiency of the rechargeable battery and solar cell. One dimensional nano materials have been attracted great attention because of its specific optical and electrical properties. In this study, 1-D semiconductor oxide nanowire arrays, such as Cu2O, ZnO, Cu2O-ZnO and CuO-Al2O3-TiO2 heterojunction, were synthesized via porous alumina membrane (PAM) assistance by electrochemical deposition. Above all, the characterization of microstructure, growth mechanism, and water splitting application were given for academic studies.
In the first part, the foundation of synthesizing Cu2O and ZnO nanowire arrays by membrane assistance was discussed. Firstly, the various pores (20~140 nm) of porous alumina membrane were fabricated. Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size, and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays by controlling various annealed time and atmosphere. Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template. The copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template, which caused the Cu→Cu2O phase transformation by compression stress. Under various pore sizes affection, the crystallinity of Cu nanowire was improved with decreasing the pore sizes. The single crystal Cu was occurred due to homogeneous current density distributes and relationship between current density (J) and nucleus radius (ro). The crystallinity of Cu2O nanowires synthesized by annealing of various Cu nanowire sizes was found to improvement. The rearranged of Cu and O2 lattice sites was promoted the enhancing of crystallinity property.
AZO seed layer was utilized with template assistance to improve the ZnO nanowire crystallinity. Results indicate the Zn(OH)2 was produced during directly electrochemical deposition. The ZnO was formed during the hydration process by annealing. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO [001] nanowires are interpreted by the seed-layer-assisted growth mechanism.
In the second part, we combine the Cu2O and ZnO to be a p-n heterojunction, and characterize the water splitting property. Under controlling of pulse duration, electrolyte concentration, and annealing time were utilized to synthesize Cu-Zn and Cu2O-ZnO nanowire arrays. Results indicate the bamboo-like (Cu, Zn) multilayer structure was observed at 40 (Cu) and 20 (Zn) seconds pulse deposition. During the various annealing time of segmented Cu-Zn nanowire process, the (Cu, Zn) oxide nanowire structures were exhibited segmented nanowire and continuous nanowire. In texture formation of (Cu, Zn) oxide nanowire was proposed on the Zn diffused into Cu oxide of heating process. The application on water splitting characterization was observed better performance in Cu2O-ZnO bamboo-like of photocurrent density 0.12 mA/cm2 and the photoconversion efficiency 0.13 %, which promotes the higher electrons transfer from Cu2O to ZnO.
In the third part, CuO-Al2O3-TiO2 p-insulator-n junction was fabricated by depositing the TiO2 nanoparticle on the CuO/PAM. The photo-current and threshold voltage (Vth) of CuO and CuO-Al2O3-TiO2 were measured as 1.08 mA/cm2 (0.65 V/SCE) and 1.81 mA/cm2 (0.9 V/SCE), respectively. The photoconversion efficiencies were characterized as 1.08% and 1.61%. Highly threshold voltage was observed due to the insulation layer of Al2O3 was posited between CuO and TiO2 interlayer to form the p-i-n junction, which cause the electrons were accumulated on the barrier layer. The rapidly increasing current was eventuated by electron tunneling effect as applying the voltage to breakdown voltage.
1. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
2. H. Kind, H. Yan, M. Law, B. Messer, and P. Yang, Adv. Mater. 14, 158 (2002).
3. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science, 277, 1971 (1997).
4. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283, 1513 (1999).
5. J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, Nature, 391, 561 (1998).
6. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Phys. Rev. 61, 6086, (2000).
7. Y. Wu and P. Yang, Adv. Mater. 13, 520 (2001).
8. Y. Y. Wu and P. D. Yang, Appl. Phys. Lett. 77, 43 (2000).
9. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, and C. P. Chen, Appl. Phys. Lett., 91, 223106 (2007).
10. Z. L. Wang and J. Song, Science, 312, 14 (2006).
11. B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Reviews 38, 16 (2009).
12. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Letters 8, 4191 (2008).
13. F. Qian, S. Gradecak, H. G. Park, Y. Dong, Z. L. Wang, and C. M. Lieber, Nat. Mater. 7, 701 (2008).
14. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, J. Phys. Chem. C, 115, 11302 (2011).
15. Y. F. Zhu, G. H. Zhou, H. Y. Ding, A. H. Liu, Y. B. Lin, and Y. W. Dong, Superlattices and Microstructure, 50, 549 (2011).
16. D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p. 105 (1992)
17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
18. D. Dobrev, J. Vetter, N. Angert, and R. Neumann, Appl. Phys. A 72, 729 (2001).
19. R. Micheletto, H. Fukuda, and Ohtsu, Langmuir 11, 3333 (1995).
20. P. M. Paulus, F. Luis, M. Kroll, G. Schmid and L. J. de Jongh, J. Mag. Mag. Mater., 224, 180 (2001).
21. M. A. Barrett and A. B. Winterbottom, “1st international congress on metal corrosion, 1961” Butterworth & Co., London, 1962, p657.
22. G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, Nature 30, 433 (1978).
23. G. E. Thompson, and G. C. Wood, Nature 19, 230 (1981).
24. F. Keller, M. A. Barrett, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).
25. S. Wernick, R. Pinner, and P. G. Sheasby, “Anodizing of Aluminum General Notes and Theory”, in Surface treatment finishing of aluminum and its alloys, 2nd ed., Finishing Publications Ltd., Teddington, Middlesex, UK, Vol. 1, Chapter 6 p.289 (1987).
26. W. Lee, R. Ji, U. Osele, and K. Nielsch, Nature Materials, 5, 741 (2006).
27. G. E. Thompson, Thin Solid Films, 297, 192 (1997).
28. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richarodson, and J. S. Goode, Nature, 272, 433 (1978).
29. H. Masuda, and K. Fukuda, Science 9, 1466 (1995).
30. H. Masuda, F, Hasegwa, S. Ono, J. Electrochem. Soc., 144, 127 (1997).
31. G. L. Che, B. B. Lakshmi, E. R.Fisher, C. R. Martin, Nature, 393, 346 (1998).
32. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
33. M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A, 19, 963 (2001).
34. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
35. Z. K. Tang, G. K. L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma. And Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
36. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchilcov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morboc, J. Appl. Phys., 98, 041301-1 (2005).
37. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).
38. E. Ruiz, S. Alvarez, P. Alemany, and R. A. Evarestov, Phys. Rev. B, 56, 7189 (1997).
39. R. W. G. Wyckoff, Crystal Structure, Wiley, New York, (1965).
40. J. M. Zuo, M. O’ Keeffe, J. C. H. Spence, Nature, 401, 49 (1999).
41. G. K. Paul, Y. Kawa, H. Sato, T. Sakurai, and K. Akimoto, Appl. Phys. Leet., 88, 141901 (2006).
42. M. A. Green, and M. J. Keevers, Prog. Photovolt., 3, 189 (1995)
43. J. J. Lofeski, J. Appl. Phys., 27, 777 (1956).
44. P. Poizot, S. Laruelle, S. Grugeon, and J-M. Tarascon, Nature, 407, 496 (2000).
45. G. S. Hermann, Y. Gao, T. T. Tran, and J. Osterwalder, Surf. Sci., 447, 201 (2000).
46. J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, Mater. Res. Bull., 10, 1023 (1975).
47. U. Diebold, Surf. Sci. Rep., 48, 53 (2003).
48. A. Hagfeldt and M. Gratzel, Chem. Rev., 95, 49 (1995).
49. H. Gerischer and Heller, J. Electrochem. Soc., 139, 113 (1992).
50. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006).
51. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes, J. Phys. D-Appl. Phys., 39, 2498 (2006).
52. A. Fujishima and K. Honda, Nature, 238, 37 (1972).
53. G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, and C. A. Grimes, Thin Solid Films, 496, 42 (2006).
54. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95 735 (1995).
55. J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, and J. S. Suh, Chem. Mater. 13, 2387 (2001).
56. X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, L. D. Zhang, Physica, 23, 75 (2004).
57. X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, L. D. Zhang, Solid State Communications, 130, 429 (2004).
58. X. Y. Zhu, J. F. Ma, Y. G. Yang, J. T. Tao, J. Zhou, Z. Q. Zhao, L. J. Xie and H. Tian, Material Research Bulletin., 41, 1588 (2006).
59. C.Zhang, F. Tao, G. Q. Liu, L. Z. Yao and W. L. Cai, Materials Letters., 62, 248 (2008).
60. Y. C. Wang, I. C. Leu, and M. H. Hon, J. Cryst. Growth, 564, 237 (2002).
61. Y. C. Wang, I. C. Leu, and M. H. Hon, J. Appl. Phys., 95, 1444 (2004).
62. L, F, Liu, W. Y. Zhou, S. S. Xie, O. Albrecht, and K. Nielsch, Chem. Phys. Lett., 466, 165 (2008).
63. L. Li, Y. Zhang, G. Li, L. Zhang, Chemical Physics Letters, 378, 244 (2003).
64. Y. Zhou, C. Shen, H. Li, Solid State Ionics, 146, 81 (2002).
65. Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen, C. L. Bai, Chem. Mater., 15, 664 (2003).
66. T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien, Science, 261, 1316 (1993).
67. S. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Yung, and Y. W. Du, J. Magn. Magn. Mater., 222, 97 (2000).
68. H. Zeng, M. Zheng , R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon, and S. Bandyopadhyay, J. Appl. Phys., 87, 4718 (2000).
69. Y. W. Wang, L. D. Zhang, G. W. Meng, X. S. Peng, Y. X. Jin, and J. Zhang, J. Phys. Chem. B, 106, 2502 (2002).
70. G. B. Ji, S. L. Tang, B. X. Gu, and Y. W. Du, J. Phys. Chem. B, 108, 8862 (2004).
71. R. Inguanta, S. Piazza, C. Sunseri, Appl. Surf. Science, 255, 8816 (2009).
72. T. Kondo, M. Tanji, K. Nishio, H. Masuda, Electrochem. Solid State Lett., 9, C189 (2006).
73. R. Inguanta, S. Piazza, C. Sunseri, Nanotechnology, 18, 485605 (2007).
74. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett., 84, 26 (2004).
75. A. J. Bard, L. R. Faulk, Electrochemical method, Wiley, New York, 21(1980).
76. J. S. Choi, E. S. Ko, J. W. Kang, Y. S. Tak, and J. Y. Lee, J. Ind. Eng. Chem., 13, 305 (2007).
77. J. Oh, Y. Tak, and J. Lee, Elecrochemical and Solid-State Letters, 7, C27 (2004).
78. E. Ko, J. Choi, K. Okamoto, Y. Tak, and J. Lee, Chem. Phys. Chem., 7, 1505 (2006).
79. H. S. Shin, J. Y. Song, and J. Yu, Mater. Lett. 63, 397 (2009).
80. R. Inguanta, C. Sunseri, and S. Piazza, Elecrochemical and Solid-State Letters, 10, K63 (2007).
81. R. Inguanta, S. Piazza, and C. Sunseri, Electrochimica Acta, 53, 6504 (2008).
82. J. Elias, R. T. Zaere, and C. L. Clément, J. Phys. Chem. C, 112, 5736 (2008).
83. M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Chem. Phys. Lett. 363, 123 (2002).
84. Q. Wang, G. Wan, B. Xu, J. Jie, and X. Han, Mater. Lett. 59, 1378, (2005).
85. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett. 76, 2011 (2000).
86. M. Lai, and D. J. Riley, Chem. Mater. 18, 2233 (2006).
87. A. Currao, Transformation and Stroage of Solar Energy, 61, 815 (2007).
88. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).
89. P. Poizot, S. Laruelle, S. Grugeon, and J-M. Tarascon, Nature, 407, 496 (2000).
90. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, . Z. Zhang, and Y. Li, Nano Letters, 9, 2331 (2009).
91. K. Keem, H. Kim, G. T. Kim, J. S. Lee, and B. Min, Appl. Phys. Lett. 84, 4376 (2004).
92. Y. Bessekhouad, D. Robert, J. V. Weber, Catalysis Today, 101, 315 (2005).
93. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, and S. Ogale, J. Mater. Chem., 22 (2012) 17055.
94. T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng, H. Li, and D. Wang, Phys. Chem. Chem. Phys., 12, 15476 (2010).
95. Z. Liu, H. Bai, S. Xu, and D. D. Sun, Inter. J. Hydro. Energy, 36, 13473 (2011).
96. H. Wei, H. Gong, Y. Wang, X. Hu, L. Chen, H. Xu, P. Liu, and B. Cao, CrystEngComm, 13, 6065 (2011).
97. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett., 10, 1088 (2010).
98. H. Kim, M. Seol, J. Lee, and K. Yong, J. Phys. Chem. C, 115, 25429 (2011).
99. A.Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, and M. Gratzel, Energy & Envior. Sci. 5, 8673 (2012).
100. T. Jiang, T. Xie, L. Chen, Z. Fu, and D. Wang, Nanoscale, 5, 2938 (2013).
101. J. S. Jang, S. M. Ji, S. W. Bae, H. C. Hon, and J. S. Lee, J. Photochem. Photobiol., 188, 112 (2007).
102. H. Fujii, M. Ohtaki, K. Eguchi, and H. J. Arai, J. Mol. Catal. A: Chem., 129, 61 (1998).
103. J. S. Jang, H. G. Kim, U. A. Joshi, J. W. Jang, and J. S. Lee, Int. J. Hydrogen Energy, 33, 5975 (2008).
104. H. Park, W. Choi, and M. R. Hoffmann, J. Mater. Chem., 18, 2379 (2008).
105. R. Brahimi, Y. Bassekhouad, A. Bouguelia, and M. Trari, Catal. Today, 122, 62 (2007).
106. X. Wang, G. Liu, Z. Chen, F. Li, L. Wang, G. Lu, and H. Cheng, Chem. Commun, 23, 3452 (2009)
107. X. Wang, G. Liu, G. Lu, and H. Cheng, Int. J. Hydrogen Energy 35, 8199 (2010).
108. T. Kida, G. Guan, and A. Yoshida, Chem. Phys. Lett, 371, 563 (2003).
109. S. Y. Ryu, J. Choi, W. Balcerski, T, K, Lee, and M. R. Hofmann, Ind. Eng. Chem. Res. 46, 7476 (2007).
110. J. Choi, W. Balcerski, T, K, Lee, and M. R. Hofmann, J. Mater. Chem., 18, 2371 (2008).
111. L. Amirav and A. P. Alivisatos, J. Phys. Chem. Lett. 1, 1051 (2010).
112. D. Jing, and L. GuO, Catal Commun., 8, 795 (2007).
113. Y. Bassekhouad, M. Trari, and J. P. Doumerc, Int. J. Hydrogen Energy, 28, 43 (2003).
114. R. Brahimi, Y. Bassekhouad, A. Bouguelia, and M. Trari, J. Photochem. Photobiol., 186, 242 (2007).
115. A. Derbal, S. Omeiri, A. Bouguelia, and M. Trari, Int. J. Hydrogen Energy, 33, 4274 (2008).
116. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, and M. Trari, Appl. Energy, 87, 2230 (2010).
117. J. S. Jang, D. W. Hwang and J. S. Lee, Catal. Today, 120, 174 (2007).
118. J. S. Jang, S. J. Hong, J. Y. Kim, and J. S. Lee, Chem. Phys. Lett. 475, 78 (2009).
119. C. C. Hu, J. N. Nian, and H. Teng, Sol. Energy Mater. Sol. Cells, 92, 1071 (2008).
120. D. S. Xu, Y. J. Xu, D. P. Chen, G. L. Guo, L. L. Gui, and Y. Q. Tang, Adv. Mater., 12, 520 (2000).
121. R. Guan, H. Hashimoto and K.H. Kuo, Acta Crystallogr. B, 40, 560 (1984).
122. R. Guan, K.H. Kuo, H. Hashimoto, Proceedings of the 8th European Congress on Electron Microscopy, Budapest, 1984, p.1173.
123. G. Zhou, J. Appl. Phys., 105, 104302 (2009).
124. G. Zhang and J. Chen, J. Electrochem. Soc. 152, A2069 (2005).
125. D. Dobrev, J. Vetter, N. Angert, and R. Neumann, Appl. Phys. A 69, 233 (1999).
126. P. Delahay, “New Instrumental Methods in Electrochemistry”, Interscience, New York 1954.
127. G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem., 138, 225 (1982).
128. J. G. Wang, M. L. Tain, N. Kumar, and T. E. Mallouk, Nano Lett., 5, 1247 (2005).
129. Z. Fan, D. Dutta, C. J. Chien, H. Y. Chen, and E. C. Brown, Appl. Phys. Lett., 89, 213110 (2006).
130. L. Yang, Y. Tang, A. Hu, X. Chen, K. Liang, and L. Zhang, Physica B, 403, 2230 (2008).
131. J. B. Yi, H. Pan, J. Y. Lin, J. Ding, Y. P. Feng, S. Thongmee, T. Liu, H. Gong, and L. Wang, Adv. Mater, 20, 1170 (2008).
132. C. H. Ku, H. H. Yang, G. R. Chen, and J. J. Wu, Crystal Growth & Design, 8, 283 (2008).
133. C. L. Kuo, R. C. Wang, C. P. Liu, and J. L. Huang, Nanotechnology, 19, 035605 (2008).
134. M Sima, I. Enculescu, M. Sima, M. Enache, W. Vasile, and J. P. Ansermet, Phys. Stat. Sol. (b), 244, 1522 (2007).
135. M. Gupta, D. Pinisetty, J. C. Flake, and J. J. Spivey, J. Electrochem. Soc. 157, D473 (2010).
136. Q. Li and C. Wang, Chem. Phys. Lett. 375, 525 (2003).
137. Z. Zhang, Md. F. Hossain, and T. Takahashi, Inter. J. Hydro. Energy 35, 8528 (2010).
138. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Nano Letters 11, 3026 (2011).
139. N. Helaili, Y. Bessekhouad, A. Bouguelia, and M. Trari, J. Hazardous Mater. 168, 484 (2009).
140. G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi, and C. A. Grimes, Nano Letters 8, 1906 (2008).
141. J. Bandara, C. P. K. Udawatta, and C. S. K. Rajapakse, Photochem. Photoboil. Sci., 4, 857 (2005).