| 研究生: |
黃英婷 Huang, Ying-Ting |
|---|---|
| 論文名稱: |
二氧化矽-四氧化三鐵-金奈米管的製備:多功能材料在光熱治療法的潛在應用 Fabrication of SiO2/Fe3O4/Au Nanotubes for Potential Applications in Photothermal Therapy |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 二氧化矽 、光熱 、納米管 |
| 外文關鍵詞: | silica, nanotubes, photothermal therapy |
| 相關次數: | 點閱:80 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文研究中,以水溶性硫酸鈉奈米線作為模板,利用溶膠凝膠法,選擇適當的溶劑比例,在四乙氧基矽水解之後,加入氫氧化鈉催化聚合之,再以水溶解硫酸鈉奈米線,移除模板之後,即可製得二氧化矽奈米管,其中也藉由水解時間的改變,調控二氧化矽奈米管的管壁厚。
反應環境為pH值>2下聚合的二氧化矽,其表面將帶有負電荷,故可以靜電吸引力的方式,與以共沉澱法製備並表面帶有正電荷的四氧化三鐵結合,繼而於其表面修飾上3-丙胺三乙氧基矽烷後,將使二氧化矽-四氧化三鐵奈米管外露胺基,且表面帶正電。
使用氧化還原法製得奈米金作為晶種,由於使用檸檬酸鈉作保護劑,其表面將帶有羧基,並帶有負電,因此利用靜電吸引力及使用連結劑,讓金晶種與二氧化矽-氧化鐵奈米管做靜電吸引力及共價鍵的結合。接著加入金成長液,並以甲醛作還原劑,使金還原於二氧化矽-氧化鐵奈米管的表面,形成金殼層,金殼層的緻密度可藉由不同量的金成長液調控,且其在近紅外光區的吸收度也將因不同成長液的量而改變。此複合材料將兼具磁性及光學性質,並可應用於磁共振顯影,以及光熱治療上。
In this study, SiO2 nanotubes were produced by using the water dissolvable sodium sulfate nanowires as hard template. SiO2 nanotubes could be synthesized by hydrolysis of tetraethoxysilan (TEOS) on the surface of Na2SO4 nanowires, followed by removal of Na2SO4 nanowires with H2O. The wall thickness of SiO2 nanotubes could be tuned by the change of the hydrolysis time of TEOS.
Because of negative charge on the surface of SiO2 nanotubes, positively charged Fe3O4 nanoparticles could be deposited by electrostatic interaction. The -NH2 functional groups on the surface of SiO2/Fe3O4 nanotubes were functionalized with 3-aminopropyl-triethoxysilane(APTES)for the purpose of synthesis of SiO2/Fe3O4/Au nanotubes.
Subsequently, Au seeds were fabricated by oxidation reduction method with protective agent sodium citrate. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) was added to conjugate the -NH2 of SiO2/Fe3O4 nanotubes and the –COOH groups existing onto Au seeds for the amide bonds formation. Finally, the Au growing stock solution was introduced to form Au nanoshell. It was focused that the near infrared (NIR) absorbance of the SiO2/Fe3O4/Au nanotubes depended on the compactness of the Au shell.
1. 工業技術研究院工業材料研究所,“奈米,不是啥稀米”,天下文化, 2005.
2. 馬振基,“奈米材料科技原理與應用”,全華科技圖書股份有限公司, 2003.
3. 盧希鵬,馬振基,“奈米材料技術地圖”,國科會科學技術資料中心, 2003.
4. Amy L. Linsebigler, Guangquan Lu, John T. Yates, Chem. Rev. 1995, 95, 735-758.
5. 周開平,陳郁文,“科學發展, 2005, 395, 66-69.
6. 林有銘,“科學發展”, 2006, 408, 24-31.
7. 周更生,李賢學,高振裕,盧育杰,“科學發展”, 2006, 408, 32-39.
8. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, Journal of Biomedical Materials Research 2000, 52, 662-668.
9. S. Y. Lin, Y. T. Tsai, C. C. Chen, C. M. Lin, C. H. Chen, J. Phys. Chem. B 2004, 108, 2134-2139.
10. J. Chen, T. Herricks, M. Geissler, Y. Xia, J. Am. Chem. Soc. 2004, 126, 10854-10855.
11. K. L. Tsai, J. L. Dye, Chem. Mater. 1993, 5, 540-546.
12. F. Y. Cheng, C. H. Su, Y. S. Yang, C. S. Yeh, C. Y. Tsai, C. L. Wu, M. T. Wu, D. B. Shieh, Biomaterials 2005, 26, 729-738.
13. H. C. Chiu, C. S. Yeh, J. Phys. Chem. C. 2007, 111, 7256-7259.
14. Ebelmen, J. J. Ann. 1846, 57, 331.
15. Schroeder, H. Phys. Thin Film, 1969, 5, 87.
16. Dislich, Angewandt Chemie 1971, 10, 363.
17. R. K. Iler, The Chemistry of silica 1979, Wiley, New York.
18. S. Iijima, Nature 1991, 354, 56.
19. C. C. Chen, Y. C. Liu, C. H. Wu, C. C. Yeh, M. T. Su, Y. C. Wu, Adv. Mater. 2005, 17, 404-407.
20. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, C. R. Martin, J. Am. Chem. Soc. 2002, 124, 11864-11865.
21. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Chemical Physics Letters 2000, 316, 13-18.
22. Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Chemical Physics Letters 1999, 299, 97-102.
23. J. Jang, H. Yoon, Adv. Mater. 2004, 16, 799-802.
24. Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, J. Hojo, S. Shinkai, Chem. Commun. 1988, 1477-1478.
25. J. H. Jung, S. H. Lee, J. S. Yoo, K. Yoshida, T. Shimizu, S. Shinkai, Chem. Eur. J. 2003, 9, 5307-5313.
26. H. Ogihara, S. Takenaka, I. Yamanaka, E. Tanabe, A. Genseki, K. Otsuka, Chem. Mater. 2006, 18, 996-1000.
27. J. Zygmunt, F. Krumeich, R. Nesper, 2003, Adv. Mater. 2003, 15, 1538-1541.
28. B. C. Satishkumar, A. Govindaraj, Erasmus M. Vogl, Lipika Basumallick, C. N. R. Rao, J. Mater. Res. 1997, 12, 604-606.
29. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, C. R. Martin, J. Am. Chem. Soc. 2002, 124, 11864.
30. R. Fan, Y. Wu, D. Li, A. Majumdar, P. Yang, J. Am. Chem. Soc. 2003, 125, 5254-5255.
31. J. E. Meegan, A. Aggeli, N. Boden, R. Brydson, A. P. Brown, L. Carrick, A. R. Brough, A. Hussain, R. J. Ansell, Adv. Mater. 2004, 14, 31-37.
32. W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Adv. Mater. 1999, 11, 253-256.
33. H. Liao, J. H. Hafner, Chem. Mater. 2005, 17, 4636-4641.
34. I. P. Santos, J. P. Juste, L. M. L. Marzán, Chem. Mater. 2006, 18, 2465-2467.
35. P. Pramod, S. T. S. Joseph, K. G. Thomas, J. Am. Chem. Soc. 2007, 129, 6712-6713.
36. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Cancer Letters 2004, 209, 171-176.
37. J. Kim, S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, T. Hyeon, Angew. Chem. Int. Ed., 2006, 45, 7754-7758.
38. V. S. Maceira, M. A. C. Duarte, M. Farle, A. L. Quintela, K. Sieradzki, R. Diaz, Chem. Mater. 2006, 18, 2701-2706.
39. C. Radloff, R. A. Vaia, Nano Letters 2005, 5, 1187-1191.
40. X. Ji, R. Shao, A. M. Elliott, R. J. Stafford, E. E. Coss, J. A. Bankson, G. Liang, Z. P. Luo, K.Park, J. T. Markert, C. Li, J. Phys. Chem. C 2007, 111, 6245-6251.
41. C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Nano Letters, 2005, 5, 709-711.
42. Y. Sun, Y. Xia, Science 2002, 298, 2176-2179.
43. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia, Nano Letters 2005, 5, 473-477.
44. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Li, H. Zhang, Y. Xia, X. Li, Nano Letters 2007, 7, 1318-1322.
45. S. Link, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410-8426.
46. R. Weissleder, Nat. Biotechnol. 2001, 19, 316-317.
47. G. Mie, Ann. Physik, 1908, 25, 377.
48. S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 3073-3077.
49. P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 7238-7248.
50. B. T. Draine, P. J. Flatau, J. Opt. Soc. Am. A 1994, 11, 1491.
51. S. J. Oldenburg, R. D. Averit, S. L.Westcott, N. J.Halas, Chem.Phys. Lett. 1998, 288, 243.
52. 鄭豐裕, “四氧化三鐵磁性奈米粒子之製備及其在生物醫學上的應用”, 國立成功大學化學研究所, 2006.
53. Y. C. Pu, J. R. Hwu, W. C. Su, D. B. Shieh, Y. H. Tzeng, C. S. Yeh, J. Am. Chem. Soc. 2006, 128, 11606-11611.
54. 蒲盈志, “合成具有水解性質的硫酸鈉奈米線可用於製備多電荷高分子及金屬奈米管的多功能模版”, 國立成功大學化學研究所, 2006.
55. Y. W. Jun, J.H. Lee, J. S. Choi, J. Cheon, J. Phys. Chem. B 2005, 109, 14795-14806.
56. 葉晨聖, 鄭豐裕, 謝達斌, 吳昭良, R.O.C. Patent 202070
57. C. S. Yeh, F. Y. Cheng, D. B. Shieh, C. L. Wu, German Patent 102004035803
58. P. A. Heiney, K. G. neberg, J. Fang, Langmuir 2000, 16, 2651-2657.